基于光容积脉搏图估计呼吸速率的深度学习方法

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Lucas C. Lampier, Yves L. Coelho, Eliete M. O. Caldeira, T. Bastos-Filho
{"title":"基于光容积脉搏图估计呼吸速率的深度学习方法","authors":"Lucas C. Lampier, Yves L. Coelho, Eliete M. O. Caldeira, T. Bastos-Filho","doi":"10.17163/ings.n27.2022.04","DOIUrl":null,"url":null,"abstract":"This article describes the methodology used to train and test a Deep Neural Network (DNN) with Photoplethysmography (PPG) data performing a regression task to estimate the Respiratory Rate (RR). The DNN architecture is based on a model used to infer the heart rate (HR) from noisy PPG signals, which is optimized to the RR problem using genetic optimization. Two open-access datasets were used in the tests, the BIDMC and the CapnoBase. With the CapnoBase dataset, the DNN achieved a median error of 1.16 breaths/min, which is comparable with analytical methods in the literature, in which the best error found is 1.1 breaths/min (excluding the 8 % noisiest data). The BIDMC dataset seems to be more challenging, as the minimum median error of the literature’s methods is 2.3 breaths/min (excluding 6 % of the noisiest data), and the DNN based approach achieved a median error of 1.52 breaths/min with the whole dataset.","PeriodicalId":53899,"journal":{"name":"Ingenius-Revista de Ciencia y Tecnologia","volume":"7 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Deep Learning Approach to Estimate the Respiratory Rate from Photoplethysmogram\",\"authors\":\"Lucas C. Lampier, Yves L. Coelho, Eliete M. O. Caldeira, T. Bastos-Filho\",\"doi\":\"10.17163/ings.n27.2022.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes the methodology used to train and test a Deep Neural Network (DNN) with Photoplethysmography (PPG) data performing a regression task to estimate the Respiratory Rate (RR). The DNN architecture is based on a model used to infer the heart rate (HR) from noisy PPG signals, which is optimized to the RR problem using genetic optimization. Two open-access datasets were used in the tests, the BIDMC and the CapnoBase. With the CapnoBase dataset, the DNN achieved a median error of 1.16 breaths/min, which is comparable with analytical methods in the literature, in which the best error found is 1.1 breaths/min (excluding the 8 % noisiest data). The BIDMC dataset seems to be more challenging, as the minimum median error of the literature’s methods is 2.3 breaths/min (excluding 6 % of the noisiest data), and the DNN based approach achieved a median error of 1.52 breaths/min with the whole dataset.\",\"PeriodicalId\":53899,\"journal\":{\"name\":\"Ingenius-Revista de Ciencia y Tecnologia\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ingenius-Revista de Ciencia y Tecnologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17163/ings.n27.2022.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenius-Revista de Ciencia y Tecnologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17163/ings.n27.2022.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了使用光容积脉搏波(PPG)数据训练和测试深度神经网络(DNN)的方法,该方法执行回归任务来估计呼吸速率(RR)。DNN架构基于一个模型,该模型用于从有噪声的PPG信号推断心率(HR),该模型使用遗传优化优化到RR问题。在测试中使用了两个开放获取的数据集,BIDMC和CapnoBase。使用CapnoBase数据集,DNN实现了1.16次呼吸/分钟的中位数误差,这与文献中的分析方法相当,其中发现的最佳误差为1.1次呼吸/分钟(不包括8%噪声数据)。BIDMC数据集似乎更具挑战性,因为文献方法的最小中位数误差为2.3次呼吸/分钟(不包括6%的噪声最大的数据),而基于DNN的方法在整个数据集上实现了1.52次呼吸/分钟的中位数误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Approach to Estimate the Respiratory Rate from Photoplethysmogram
This article describes the methodology used to train and test a Deep Neural Network (DNN) with Photoplethysmography (PPG) data performing a regression task to estimate the Respiratory Rate (RR). The DNN architecture is based on a model used to infer the heart rate (HR) from noisy PPG signals, which is optimized to the RR problem using genetic optimization. Two open-access datasets were used in the tests, the BIDMC and the CapnoBase. With the CapnoBase dataset, the DNN achieved a median error of 1.16 breaths/min, which is comparable with analytical methods in the literature, in which the best error found is 1.1 breaths/min (excluding the 8 % noisiest data). The BIDMC dataset seems to be more challenging, as the minimum median error of the literature’s methods is 2.3 breaths/min (excluding 6 % of the noisiest data), and the DNN based approach achieved a median error of 1.52 breaths/min with the whole dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ingenius-Revista de Ciencia y Tecnologia
Ingenius-Revista de Ciencia y Tecnologia ENGINEERING, MULTIDISCIPLINARY-
CiteScore
0.90
自引率
0.00%
发文量
11
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信