外弯矩作用下异型单搭接节点的二维应力分析

K. Nakano, T. Sawa, H. Toratani
{"title":"外弯矩作用下异型单搭接节点的二维应力分析","authors":"K. Nakano, T. Sawa, H. Toratani","doi":"10.1299/KIKAIA.62.2580","DOIUrl":null,"url":null,"abstract":"\n The stress distributions of single-lap adhesive joints of dissimilar adherends subjected to external bending moments are analyzed as a three-body contact problem by using a two-dimensional theory of elasticity (plain strain). In the analysis, dissimilar adherends and an adhesive are replaced by finite strips, respectively. In the numerical calculations, the effects of Young’s modulus ratio, adherend thickness ratio and adherend length ratio on the stress distribution at the interface are examined. As the results, it is seen that the stress singularity occurs at the edges of the interfaces and it increases at the edge of the interface of adherend with greater Young’s modulus It is noticed that the singular stress decreases at the edge of the interface of adherend with larger adherend thickness. Strain measurements on adherends were conducted. A fairly good agreement is seen between the analytical and the measured results.","PeriodicalId":64773,"journal":{"name":"失效分析与预防","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-Dimensional Stress Analysis of Single-Lap Joints of Dissimilar Adherends Subjected to External Bending Moments\",\"authors\":\"K. Nakano, T. Sawa, H. Toratani\",\"doi\":\"10.1299/KIKAIA.62.2580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The stress distributions of single-lap adhesive joints of dissimilar adherends subjected to external bending moments are analyzed as a three-body contact problem by using a two-dimensional theory of elasticity (plain strain). In the analysis, dissimilar adherends and an adhesive are replaced by finite strips, respectively. In the numerical calculations, the effects of Young’s modulus ratio, adherend thickness ratio and adherend length ratio on the stress distribution at the interface are examined. As the results, it is seen that the stress singularity occurs at the edges of the interfaces and it increases at the edge of the interface of adherend with greater Young’s modulus It is noticed that the singular stress decreases at the edge of the interface of adherend with larger adherend thickness. Strain measurements on adherends were conducted. A fairly good agreement is seen between the analytical and the measured results.\",\"PeriodicalId\":64773,\"journal\":{\"name\":\"失效分析与预防\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"失效分析与预防\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1299/KIKAIA.62.2580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"失效分析与预防","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1299/KIKAIA.62.2580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用二维平面应变弹性理论,分析了不同黏着物单搭接接头在受外弯矩作用下的应力分布。在分析中,不同的附着物和粘合剂分别用有限条代替。在数值计算中,考察了杨氏模量比、黏附厚度比和黏附长度比对界面应力分布的影响。结果表明,随着杨氏模量的增大,界面边缘出现应力奇异性,界面边缘应力奇异性增大,界面厚度越大,界面边缘应力奇异性减小。对附着物进行了应变测量。分析结果与实测结果相当吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Dimensional Stress Analysis of Single-Lap Joints of Dissimilar Adherends Subjected to External Bending Moments
The stress distributions of single-lap adhesive joints of dissimilar adherends subjected to external bending moments are analyzed as a three-body contact problem by using a two-dimensional theory of elasticity (plain strain). In the analysis, dissimilar adherends and an adhesive are replaced by finite strips, respectively. In the numerical calculations, the effects of Young’s modulus ratio, adherend thickness ratio and adherend length ratio on the stress distribution at the interface are examined. As the results, it is seen that the stress singularity occurs at the edges of the interfaces and it increases at the edge of the interface of adherend with greater Young’s modulus It is noticed that the singular stress decreases at the edge of the interface of adherend with larger adherend thickness. Strain measurements on adherends were conducted. A fairly good agreement is seen between the analytical and the measured results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1258
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信