Snowball:从大型纯文本集合中提取关系

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Eugene Agichtein, L. Gravano
{"title":"Snowball:从大型纯文本集合中提取关系","authors":"Eugene Agichtein, L. Gravano","doi":"10.1145/336597.336644","DOIUrl":null,"url":null,"abstract":"Text documents often contain valuable structured data that is hidden Yin regular English sentences. This data is best exploited infavailable as arelational table that we could use for answering precise queries or running data mining tasks.We explore a technique for extracting such tables from document collections that requires only a handful of training examples from users. These examples are used to generate extraction patterns, that in turn result in new tuples being extracted from the document collection.We build on this idea and present our Snowball system. Snowball introduces novel strategies for generating patterns and extracting tuples from plain-text documents.At each iteration of the extraction process, Snowball evaluates the quality of these patterns and tuples without human intervention,and keeps only the most reliable ones for the next iteration. In this paper we also develop a scalable evaluation methodology and metrics for our task, and present a thorough experimental evaluation of Snowball and comparable techniques over a collection of more than 300,000 newspaper documents.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1447","resultStr":"{\"title\":\"Snowball: extracting relations from large plain-text collections\",\"authors\":\"Eugene Agichtein, L. Gravano\",\"doi\":\"10.1145/336597.336644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text documents often contain valuable structured data that is hidden Yin regular English sentences. This data is best exploited infavailable as arelational table that we could use for answering precise queries or running data mining tasks.We explore a technique for extracting such tables from document collections that requires only a handful of training examples from users. These examples are used to generate extraction patterns, that in turn result in new tuples being extracted from the document collection.We build on this idea and present our Snowball system. Snowball introduces novel strategies for generating patterns and extracting tuples from plain-text documents.At each iteration of the extraction process, Snowball evaluates the quality of these patterns and tuples without human intervention,and keeps only the most reliable ones for the next iteration. In this paper we also develop a scalable evaluation methodology and metrics for our task, and present a thorough experimental evaluation of Snowball and comparable techniques over a collection of more than 300,000 newspaper documents.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2000-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1447\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/336597.336644\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/336597.336644","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1447

摘要

文本文档通常包含有价值的结构化数据,这些数据隐藏在规则的英语句子中。这些数据最好作为关系表来利用,我们可以使用它们来回答精确的查询或运行数据挖掘任务。我们探索了一种从文档集合中提取这样的表的技术,这种技术只需要来自用户的少量训练示例。这些示例用于生成提取模式,从而从文档集合中提取新的元组。我们以这个想法为基础,展示了我们的雪球系统。Snowball引入了用于生成模式和从纯文本文档提取元组的新策略。在抽取过程的每次迭代中,Snowball在没有人工干预的情况下评估这些模式和元组的质量,并仅为下一次迭代保留最可靠的模式和元组。在本文中,我们还为我们的任务开发了一种可扩展的评估方法和指标,并对雪球和超过30万份报纸文件的收集进行了全面的实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Snowball: extracting relations from large plain-text collections
Text documents often contain valuable structured data that is hidden Yin regular English sentences. This data is best exploited infavailable as arelational table that we could use for answering precise queries or running data mining tasks.We explore a technique for extracting such tables from document collections that requires only a handful of training examples from users. These examples are used to generate extraction patterns, that in turn result in new tuples being extracted from the document collection.We build on this idea and present our Snowball system. Snowball introduces novel strategies for generating patterns and extracting tuples from plain-text documents.At each iteration of the extraction process, Snowball evaluates the quality of these patterns and tuples without human intervention,and keeps only the most reliable ones for the next iteration. In this paper we also develop a scalable evaluation methodology and metrics for our task, and present a thorough experimental evaluation of Snowball and comparable techniques over a collection of more than 300,000 newspaper documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信