Abdelsemi Taibi, B. Rouissat, M. Matallah, N. Smail
{"title":"早期龄期对混凝土重力坝力学性能影响的数值模拟","authors":"Abdelsemi Taibi, B. Rouissat, M. Matallah, N. Smail","doi":"10.3311/ppci.21803","DOIUrl":null,"url":null,"abstract":"The control of thermal cracks induced by the effect of early age are the main concerns in concrete dam during the construction stage. Despite its importance, detailed thermal analysis of concrete gravity dams during the construction period is relatively rarely in the literature, eventually because prediction the behavior of concrete gravity dam on early stage requires taking into account the several phenomena and interaction, demands a considerable computational effort. To overcome this drawback, the present paper proposes a numerical modeling strategy to predict the thermo-mechanical behavior of concrete gravity dams during construction periods considering the effect of early age and the construction schedule. The proposed strategy is also used to study the effect of pre-cooling methods on the thermal-mechanical fields on concrete gravity dam during construction process. For this purpose, a Chemo-Thermo-Mechanical model is developed for predicting the behavior of a gravity dam at early stages. Firstly, temperature field model was established and verified with the results reported in the literature. Furthermore, the thermo-mechanical behavior of a concrete gravity dam is performed for two configurations: Early age state with pre-cooling and early age without pre-cooling. Thermal stress analysis was also conducted and results showed that the greatest tensile stresses after construction are developed at the heel of dams and resumption of concreting interface due to the internal restraint imposed by the concrete. The numerical results showed that the pre-cooling methods is an effective way to reduce both the hydration temperature and tensile stress induced by the effect of early age.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Modeling of Early-age Effects on the Mechanical Behavior of Concrete Gravity Dams\",\"authors\":\"Abdelsemi Taibi, B. Rouissat, M. Matallah, N. Smail\",\"doi\":\"10.3311/ppci.21803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control of thermal cracks induced by the effect of early age are the main concerns in concrete dam during the construction stage. Despite its importance, detailed thermal analysis of concrete gravity dams during the construction period is relatively rarely in the literature, eventually because prediction the behavior of concrete gravity dam on early stage requires taking into account the several phenomena and interaction, demands a considerable computational effort. To overcome this drawback, the present paper proposes a numerical modeling strategy to predict the thermo-mechanical behavior of concrete gravity dams during construction periods considering the effect of early age and the construction schedule. The proposed strategy is also used to study the effect of pre-cooling methods on the thermal-mechanical fields on concrete gravity dam during construction process. For this purpose, a Chemo-Thermo-Mechanical model is developed for predicting the behavior of a gravity dam at early stages. Firstly, temperature field model was established and verified with the results reported in the literature. Furthermore, the thermo-mechanical behavior of a concrete gravity dam is performed for two configurations: Early age state with pre-cooling and early age without pre-cooling. Thermal stress analysis was also conducted and results showed that the greatest tensile stresses after construction are developed at the heel of dams and resumption of concreting interface due to the internal restraint imposed by the concrete. The numerical results showed that the pre-cooling methods is an effective way to reduce both the hydration temperature and tensile stress induced by the effect of early age.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.21803\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.21803","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Numerical Modeling of Early-age Effects on the Mechanical Behavior of Concrete Gravity Dams
The control of thermal cracks induced by the effect of early age are the main concerns in concrete dam during the construction stage. Despite its importance, detailed thermal analysis of concrete gravity dams during the construction period is relatively rarely in the literature, eventually because prediction the behavior of concrete gravity dam on early stage requires taking into account the several phenomena and interaction, demands a considerable computational effort. To overcome this drawback, the present paper proposes a numerical modeling strategy to predict the thermo-mechanical behavior of concrete gravity dams during construction periods considering the effect of early age and the construction schedule. The proposed strategy is also used to study the effect of pre-cooling methods on the thermal-mechanical fields on concrete gravity dam during construction process. For this purpose, a Chemo-Thermo-Mechanical model is developed for predicting the behavior of a gravity dam at early stages. Firstly, temperature field model was established and verified with the results reported in the literature. Furthermore, the thermo-mechanical behavior of a concrete gravity dam is performed for two configurations: Early age state with pre-cooling and early age without pre-cooling. Thermal stress analysis was also conducted and results showed that the greatest tensile stresses after construction are developed at the heel of dams and resumption of concreting interface due to the internal restraint imposed by the concrete. The numerical results showed that the pre-cooling methods is an effective way to reduce both the hydration temperature and tensile stress induced by the effect of early age.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.