基于XGBOOST的产品推荐新方法

B. Bhavana, J. Karthik, P. L. Kumari
{"title":"基于XGBOOST的产品推荐新方法","authors":"B. Bhavana, J. Karthik, P. L. Kumari","doi":"10.1109/IDCIoT56793.2023.10053453","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is the most trending research area. Generally, most purchase decisions and price predictions are made based on product reviews. Sentiment analysis helps in understanding the product better. The sentiment analysis of a product summarizes whether the product has a positive, negative or neutral rating. Existing machine learning algorithms like logistic Regression, Decision Tree are used to determine sentiment for product reviews. This work includes XGBOOST and a hybrid model XGBOOST - RF used to observe sentiment on product reviews. The model that gives best performance is used to build a system that recommends products to users.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"240 1","pages":"256-261"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach for Product Recommendation using XGBOOST\",\"authors\":\"B. Bhavana, J. Karthik, P. L. Kumari\",\"doi\":\"10.1109/IDCIoT56793.2023.10053453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis is the most trending research area. Generally, most purchase decisions and price predictions are made based on product reviews. Sentiment analysis helps in understanding the product better. The sentiment analysis of a product summarizes whether the product has a positive, negative or neutral rating. Existing machine learning algorithms like logistic Regression, Decision Tree are used to determine sentiment for product reviews. This work includes XGBOOST and a hybrid model XGBOOST - RF used to observe sentiment on product reviews. The model that gives best performance is used to build a system that recommends products to users.\",\"PeriodicalId\":60583,\"journal\":{\"name\":\"物联网技术\",\"volume\":\"240 1\",\"pages\":\"256-261\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物联网技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/IDCIoT56793.2023.10053453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感分析是最热门的研究领域。通常,大多数购买决策和价格预测都是基于产品评论做出的。情感分析有助于更好地理解产品。产品的情感分析总结了该产品是否具有正面,负面或中性评级。现有的机器学习算法,如逻辑回归、决策树,被用来确定产品评论的情绪。这项工作包括XGBOOST和XGBOOST - RF混合模型,用于观察产品评论的情绪。给出最佳性能的模型用于构建向用户推荐产品的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Approach for Product Recommendation using XGBOOST
Sentiment analysis is the most trending research area. Generally, most purchase decisions and price predictions are made based on product reviews. Sentiment analysis helps in understanding the product better. The sentiment analysis of a product summarizes whether the product has a positive, negative or neutral rating. Existing machine learning algorithms like logistic Regression, Decision Tree are used to determine sentiment for product reviews. This work includes XGBOOST and a hybrid model XGBOOST - RF used to observe sentiment on product reviews. The model that gives best performance is used to build a system that recommends products to users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5689
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信