{"title":"生成对抗神经网络在扫描隧道显微镜数据库形成中的应用","authors":"T. Shelkovnikova, S. Egorov, P. Gulyaev","doi":"10.18287/2412-6179-co-1144","DOIUrl":null,"url":null,"abstract":"We discuss the development of a technique for automatic generation of databases of images obtained with a scanning tunneling microscope. An analysis of state-of-the-art methods and means of automatic processing of images obtained from probe and electron microscopes is carried out. We proposed using generative-adversarial networks for generating images taken with a scanning tunneling microscope to form training databases of images. A process of training and comparison of deep convolutional generative adversarial network (DCGAN) architectures using the OpenCV and Keras libraries together with TensorFlow is described, with the best of them identified by computing the metrics IS, FID, and KID. The scaling of images obtained from DCGAN is performed using a method of fine tuning of a super-resolution generative adversarial neural network (SRGAN) and bilinear interpolation based on the Python programming language. An analysis of calculated quantitative metrics values shows that the best results of image generation are obtained using DCGAN96 and SRGAN. It is found that FID and KID metric values for SRGAN method are better than values for bilinear interpolation in all cases except for DCGAN32. All calculations are performed on a GTX GeForce 1070 video card. A method for automatic generation of a scanning tunneling microscope image database based on the stepwise application of DCGAN and SRGAN is developed. Results of generation and comparison of the original image, the one obtained with DCGAN96 and the enlarged image with SRGAN are presented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of generative adversarial neural networks for the formation of databases in scanning tunneling microscopy\",\"authors\":\"T. Shelkovnikova, S. Egorov, P. Gulyaev\",\"doi\":\"10.18287/2412-6179-co-1144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the development of a technique for automatic generation of databases of images obtained with a scanning tunneling microscope. An analysis of state-of-the-art methods and means of automatic processing of images obtained from probe and electron microscopes is carried out. We proposed using generative-adversarial networks for generating images taken with a scanning tunneling microscope to form training databases of images. A process of training and comparison of deep convolutional generative adversarial network (DCGAN) architectures using the OpenCV and Keras libraries together with TensorFlow is described, with the best of them identified by computing the metrics IS, FID, and KID. The scaling of images obtained from DCGAN is performed using a method of fine tuning of a super-resolution generative adversarial neural network (SRGAN) and bilinear interpolation based on the Python programming language. An analysis of calculated quantitative metrics values shows that the best results of image generation are obtained using DCGAN96 and SRGAN. It is found that FID and KID metric values for SRGAN method are better than values for bilinear interpolation in all cases except for DCGAN32. All calculations are performed on a GTX GeForce 1070 video card. A method for automatic generation of a scanning tunneling microscope image database based on the stepwise application of DCGAN and SRGAN is developed. Results of generation and comparison of the original image, the one obtained with DCGAN96 and the enlarged image with SRGAN are presented.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1144\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1144","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of generative adversarial neural networks for the formation of databases in scanning tunneling microscopy
We discuss the development of a technique for automatic generation of databases of images obtained with a scanning tunneling microscope. An analysis of state-of-the-art methods and means of automatic processing of images obtained from probe and electron microscopes is carried out. We proposed using generative-adversarial networks for generating images taken with a scanning tunneling microscope to form training databases of images. A process of training and comparison of deep convolutional generative adversarial network (DCGAN) architectures using the OpenCV and Keras libraries together with TensorFlow is described, with the best of them identified by computing the metrics IS, FID, and KID. The scaling of images obtained from DCGAN is performed using a method of fine tuning of a super-resolution generative adversarial neural network (SRGAN) and bilinear interpolation based on the Python programming language. An analysis of calculated quantitative metrics values shows that the best results of image generation are obtained using DCGAN96 and SRGAN. It is found that FID and KID metric values for SRGAN method are better than values for bilinear interpolation in all cases except for DCGAN32. All calculations are performed on a GTX GeForce 1070 video card. A method for automatic generation of a scanning tunneling microscope image database based on the stepwise application of DCGAN and SRGAN is developed. Results of generation and comparison of the original image, the one obtained with DCGAN96 and the enlarged image with SRGAN are presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.