{"title":"非分离数据的改进PSO聚类","authors":"Chilankamol Sunny, Shibu Kumar K. B","doi":"10.1080/0952813X.2021.1970238","DOIUrl":null,"url":null,"abstract":"ABSTRACT Cluster analysis is the most popular and often the foremost task in big data analytics as it helps in unearthing hidden patterns and trends in data. Traditional single-objective clustering techniques often suffer from accuracy fluctuations especially when applied over data groups of varying densities and imbalanced distribution as well as in the presence of outliers. This paper presents a multi-phase clustering solution that achieves good accuracy measures even in the case of noisy and not- well-separated data (linearly not separable data). The proposed design combines a two-stage Particle Swarm Optimisation (PSO) clustering with K-means logic and a state-of-the-art outlier removal technique. The use of two different optimisation criteria in the two stages of PSO clustering equips the model with the ability to escape local minima traps in the process of convergence. Extensive experiments featuring a wide variety of data have been carried out and the system could achieve accuracy levels as high as 99.9% and an average of 87.4% on notwell-separated data. The model has also been proved to be robust on eight out of the ten datasets of the Fundamental Clustering Problem Suit (FCPS), a benchmark for clustering algorithms.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"232 1","pages":"831 - 847"},"PeriodicalIF":1.7000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Refined PSO Clustering for Not Well-Separated Data\",\"authors\":\"Chilankamol Sunny, Shibu Kumar K. B\",\"doi\":\"10.1080/0952813X.2021.1970238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Cluster analysis is the most popular and often the foremost task in big data analytics as it helps in unearthing hidden patterns and trends in data. Traditional single-objective clustering techniques often suffer from accuracy fluctuations especially when applied over data groups of varying densities and imbalanced distribution as well as in the presence of outliers. This paper presents a multi-phase clustering solution that achieves good accuracy measures even in the case of noisy and not- well-separated data (linearly not separable data). The proposed design combines a two-stage Particle Swarm Optimisation (PSO) clustering with K-means logic and a state-of-the-art outlier removal technique. The use of two different optimisation criteria in the two stages of PSO clustering equips the model with the ability to escape local minima traps in the process of convergence. Extensive experiments featuring a wide variety of data have been carried out and the system could achieve accuracy levels as high as 99.9% and an average of 87.4% on notwell-separated data. The model has also been proved to be robust on eight out of the ten datasets of the Fundamental Clustering Problem Suit (FCPS), a benchmark for clustering algorithms.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"232 1\",\"pages\":\"831 - 847\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2021.1970238\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1970238","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Refined PSO Clustering for Not Well-Separated Data
ABSTRACT Cluster analysis is the most popular and often the foremost task in big data analytics as it helps in unearthing hidden patterns and trends in data. Traditional single-objective clustering techniques often suffer from accuracy fluctuations especially when applied over data groups of varying densities and imbalanced distribution as well as in the presence of outliers. This paper presents a multi-phase clustering solution that achieves good accuracy measures even in the case of noisy and not- well-separated data (linearly not separable data). The proposed design combines a two-stage Particle Swarm Optimisation (PSO) clustering with K-means logic and a state-of-the-art outlier removal technique. The use of two different optimisation criteria in the two stages of PSO clustering equips the model with the ability to escape local minima traps in the process of convergence. Extensive experiments featuring a wide variety of data have been carried out and the system could achieve accuracy levels as high as 99.9% and an average of 87.4% on notwell-separated data. The model has also been proved to be robust on eight out of the ten datasets of the Fundamental Clustering Problem Suit (FCPS), a benchmark for clustering algorithms.
期刊介绍:
Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research.
The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following:
• cognitive science
• games
• learning
• knowledge representation
• memory and neural system modelling
• perception
• problem-solving