{"title":"分布式计算系统结构鲁棒性函数的计算","authors":"E. Jakover","doi":"10.1109/KORUS.2000.866011","DOIUrl":null,"url":null,"abstract":"Chordal rings are commonly used as a network structures for distributed computing systems. The overall robustness of the given system depends on a network structure and two general parameters qualifying the availability of system components namely the availability of nodes (Sn) and availability of links (Sl). We use the Monte Carlo method to compute the value of structural fault tolerance function for the given network structure defined by a corresponding chordal ring and particular values of parameters Sn and Sl.","PeriodicalId":20531,"journal":{"name":"Proceedings KORUS 2000. The 4th Korea-Russia International Symposium On Science and Technology","volume":"11 1","pages":"144-146 vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the structural robustness function for distributed computing systems\",\"authors\":\"E. Jakover\",\"doi\":\"10.1109/KORUS.2000.866011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chordal rings are commonly used as a network structures for distributed computing systems. The overall robustness of the given system depends on a network structure and two general parameters qualifying the availability of system components namely the availability of nodes (Sn) and availability of links (Sl). We use the Monte Carlo method to compute the value of structural fault tolerance function for the given network structure defined by a corresponding chordal ring and particular values of parameters Sn and Sl.\",\"PeriodicalId\":20531,\"journal\":{\"name\":\"Proceedings KORUS 2000. The 4th Korea-Russia International Symposium On Science and Technology\",\"volume\":\"11 1\",\"pages\":\"144-146 vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings KORUS 2000. The 4th Korea-Russia International Symposium On Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KORUS.2000.866011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings KORUS 2000. The 4th Korea-Russia International Symposium On Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KORUS.2000.866011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computing the structural robustness function for distributed computing systems
Chordal rings are commonly used as a network structures for distributed computing systems. The overall robustness of the given system depends on a network structure and two general parameters qualifying the availability of system components namely the availability of nodes (Sn) and availability of links (Sl). We use the Monte Carlo method to compute the value of structural fault tolerance function for the given network structure defined by a corresponding chordal ring and particular values of parameters Sn and Sl.