基于gpu加速遗传算法的空中交通管理

IF 1.1 Q3 TRANSPORTATION SCIENCE & TECHNOLOGY
Rahul Rampure, Raghav Tiruvallur, Vybhav. K. Acharya, Shashank Navad, P. Preethi
{"title":"基于gpu加速遗传算法的空中交通管理","authors":"Rahul Rampure, Raghav Tiruvallur, Vybhav. K. Acharya, Shashank Navad, P. Preethi","doi":"10.2478/ttj-2023-0021","DOIUrl":null,"url":null,"abstract":"Abstract Air traffic management is becoming highly complex with the rapid increase in the number of commercial and cargo flights, leading to increased traffic congestion and flight delays. To mitigate these issues, we present a flight path generation system that distributes the aeroplanes across the airspace and imparts minimal delays to the flight if required, thus ensuring that the aircraft follows the shortest route wherein it encounters the least amount of traffic. We develop a parallel genetic algorithm in CUDA-C with a novel fitness function allowing the system to reach an optimal solution where the air traffic density is minimised. The proposed algorithm was tested on one day's domestic flight schedule and achieved an 18% reduction in traffic density, with the flight times and delays remaining proportional to the data observed in the existing air traffic management system.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"1 1","pages":"266 - 277"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air Traffic Management Using a GPU-Accelerated Genetic Algorithm\",\"authors\":\"Rahul Rampure, Raghav Tiruvallur, Vybhav. K. Acharya, Shashank Navad, P. Preethi\",\"doi\":\"10.2478/ttj-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Air traffic management is becoming highly complex with the rapid increase in the number of commercial and cargo flights, leading to increased traffic congestion and flight delays. To mitigate these issues, we present a flight path generation system that distributes the aeroplanes across the airspace and imparts minimal delays to the flight if required, thus ensuring that the aircraft follows the shortest route wherein it encounters the least amount of traffic. We develop a parallel genetic algorithm in CUDA-C with a novel fitness function allowing the system to reach an optimal solution where the air traffic density is minimised. The proposed algorithm was tested on one day's domestic flight schedule and achieved an 18% reduction in traffic density, with the flight times and delays remaining proportional to the data observed in the existing air traffic management system.\",\"PeriodicalId\":44110,\"journal\":{\"name\":\"Transport and Telecommunication Journal\",\"volume\":\"1 1\",\"pages\":\"266 - 277\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport and Telecommunication Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ttj-2023-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport and Telecommunication Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ttj-2023-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着商业和货运航班数量的迅速增加,空中交通管理变得高度复杂,导致交通拥堵和航班延误增加。为了缓解这些问题,我们提出了一个飞行路径生成系统,该系统将飞机分配到整个空域,并在必要时给予飞行最小的延误,从而确保飞机遵循最短的路线,其中遇到的交通量最少。我们在CUDA-C中开发了一种并行遗传算法,该算法具有新颖的适应度函数,使系统能够达到空中交通密度最小的最佳解决方案。该算法在一天的国内航班时刻表上进行了测试,实现了18%的交通密度降低,飞行时间和延误保持与现有空中交通管理系统中观察到的数据成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Air Traffic Management Using a GPU-Accelerated Genetic Algorithm
Abstract Air traffic management is becoming highly complex with the rapid increase in the number of commercial and cargo flights, leading to increased traffic congestion and flight delays. To mitigate these issues, we present a flight path generation system that distributes the aeroplanes across the airspace and imparts minimal delays to the flight if required, thus ensuring that the aircraft follows the shortest route wherein it encounters the least amount of traffic. We develop a parallel genetic algorithm in CUDA-C with a novel fitness function allowing the system to reach an optimal solution where the air traffic density is minimised. The proposed algorithm was tested on one day's domestic flight schedule and achieved an 18% reduction in traffic density, with the flight times and delays remaining proportional to the data observed in the existing air traffic management system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport and Telecommunication Journal
Transport and Telecommunication Journal TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
3.00
自引率
0.00%
发文量
21
审稿时长
35 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信