含金属填料产氢、产烃CO2利用工艺研究

C. A. Garifullina, I. Ibragimov, I. Indrupskiy, D. S. Klimov, E. Zakirov, R. Sakhabutdinov
{"title":"含金属填料产氢、产烃CO2利用工艺研究","authors":"C. A. Garifullina, I. Ibragimov, I. Indrupskiy, D. S. Klimov, E. Zakirov, R. Sakhabutdinov","doi":"10.2118/206612-ms","DOIUrl":null,"url":null,"abstract":"\n Continuing consumption of fossil fuels around the world, which has led to an increasing concentration of carbon dioxide CO2 in the atmosphere and global climate change caused by greenhouse gases, has become one of the main challenges for humanity. Heterogeneous catalytic hydrogenation of carbon dioxide in order to obtain valuable carbon-containing products and materials is one of the decarbonization directions. There is much research in the world dedicated to the hydrogenation of CO2 to various hydrocarbons, such as methane, lower olefins, long-chain hydrocarbons, formic acid, methanol and higher alcohols, which are produced by catalytic reactions with various mechanisms. There are still significant challenges associated with the need for an external source of hydrogen, high process temperatures, and the development of active, selective, and stable catalysts that would be suitable for large-scale production.\n This paper presents results of research on a CO2 utilization method with hydrogen and hydrocarbons production – the transformation of wastes into a source of energy, which allows solving environmental and energy problems. The method described in this paper consists in the interaction of metallic fillers with water saturated with carbon dioxide in a reactor at low (room) temperatures and further analysis of the resulting gas mixture using a chromatograph.\n Qualitative and quantitative evaluation of the produced gas composition, study of the effect of reaction system volume, filler composition and structure, and process temperature on the reaction product yield are presented. The results of theoretical and experimental analysis of the reactions underlying the process are given, and the economic potential of the proposed laboratory method is evaluated.","PeriodicalId":11052,"journal":{"name":"Day 3 Thu, October 14, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of CO2 Utilization Processes on Metal-Containing Fillers with Generation of Hydrogen and Hydrocarbons\",\"authors\":\"C. A. Garifullina, I. Ibragimov, I. Indrupskiy, D. S. Klimov, E. Zakirov, R. Sakhabutdinov\",\"doi\":\"10.2118/206612-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Continuing consumption of fossil fuels around the world, which has led to an increasing concentration of carbon dioxide CO2 in the atmosphere and global climate change caused by greenhouse gases, has become one of the main challenges for humanity. Heterogeneous catalytic hydrogenation of carbon dioxide in order to obtain valuable carbon-containing products and materials is one of the decarbonization directions. There is much research in the world dedicated to the hydrogenation of CO2 to various hydrocarbons, such as methane, lower olefins, long-chain hydrocarbons, formic acid, methanol and higher alcohols, which are produced by catalytic reactions with various mechanisms. There are still significant challenges associated with the need for an external source of hydrogen, high process temperatures, and the development of active, selective, and stable catalysts that would be suitable for large-scale production.\\n This paper presents results of research on a CO2 utilization method with hydrogen and hydrocarbons production – the transformation of wastes into a source of energy, which allows solving environmental and energy problems. The method described in this paper consists in the interaction of metallic fillers with water saturated with carbon dioxide in a reactor at low (room) temperatures and further analysis of the resulting gas mixture using a chromatograph.\\n Qualitative and quantitative evaluation of the produced gas composition, study of the effect of reaction system volume, filler composition and structure, and process temperature on the reaction product yield are presented. The results of theoretical and experimental analysis of the reactions underlying the process are given, and the economic potential of the proposed laboratory method is evaluated.\",\"PeriodicalId\":11052,\"journal\":{\"name\":\"Day 3 Thu, October 14, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, October 14, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206612-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 14, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206612-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

世界范围内化石燃料的持续消耗,导致大气中二氧化碳浓度的增加和温室气体引起的全球气候变化,已成为人类面临的主要挑战之一。二氧化碳的多相催化加氢以获得有价值的含碳产品和材料是脱碳的方向之一。国际上对二氧化碳加氢生成甲烷、低烯烃、长链烃、甲酸、甲醇和高级醇等多种烃类进行了大量的研究,这些烃类是通过各种催化反应产生的。对于外部氢源的需求,高工艺温度,以及适合大规模生产的活性、选择性和稳定催化剂的开发,仍然存在重大挑战。本文介绍了一种生产氢和碳氢化合物的二氧化碳利用方法的研究结果-将废物转化为能源,可以解决环境和能源问题。本文描述的方法包括在低温(室温)反应器中,金属填料与饱和二氧化碳的水相互作用,并使用色谱仪进一步分析产生的气体混合物。对产气组成进行了定性和定量评价,研究了反应体系体积、填料组成和结构、工艺温度对反应产物收率的影响。给出了该工艺的理论和实验分析结果,并对所提出的实验室方法的经济潜力进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of CO2 Utilization Processes on Metal-Containing Fillers with Generation of Hydrogen and Hydrocarbons
Continuing consumption of fossil fuels around the world, which has led to an increasing concentration of carbon dioxide CO2 in the atmosphere and global climate change caused by greenhouse gases, has become one of the main challenges for humanity. Heterogeneous catalytic hydrogenation of carbon dioxide in order to obtain valuable carbon-containing products and materials is one of the decarbonization directions. There is much research in the world dedicated to the hydrogenation of CO2 to various hydrocarbons, such as methane, lower olefins, long-chain hydrocarbons, formic acid, methanol and higher alcohols, which are produced by catalytic reactions with various mechanisms. There are still significant challenges associated with the need for an external source of hydrogen, high process temperatures, and the development of active, selective, and stable catalysts that would be suitable for large-scale production. This paper presents results of research on a CO2 utilization method with hydrogen and hydrocarbons production – the transformation of wastes into a source of energy, which allows solving environmental and energy problems. The method described in this paper consists in the interaction of metallic fillers with water saturated with carbon dioxide in a reactor at low (room) temperatures and further analysis of the resulting gas mixture using a chromatograph. Qualitative and quantitative evaluation of the produced gas composition, study of the effect of reaction system volume, filler composition and structure, and process temperature on the reaction product yield are presented. The results of theoretical and experimental analysis of the reactions underlying the process are given, and the economic potential of the proposed laboratory method is evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信