{"title":"多结聚光电池与单结聚光电池的标准效率和平均效率之差","authors":"Sarah R. Kurtz, J.M. Olson, P. Faine","doi":"10.1016/0379-6787(91)90081-Y","DOIUrl":null,"url":null,"abstract":"<div><p>The theoretical performances of ideal single- and multijunction cells are compared at 100 × concentration under a range of cloudless-sky conditions. The sensitivities of device performance to cell temperature and spectral variations are shown to depend on the number of junctions (one, two or three), the way in which the junctions are connected (series, parallel or independent), and the band gaps of the devices. The average performances of all of the multijunction devices surpass that of a single-junction GaAs device, but the inconsistency in performance of some of the multijunction devices is significant for large variations in cell temperature and incident spectrum. The choice of band gap and connection scheme is more important than the number of junctions in determining the consistency of device performance.</p></div>","PeriodicalId":101172,"journal":{"name":"Solar Cells","volume":"30 1","pages":"Pages 501-513"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0379-6787(91)90081-Y","citationCount":"45","resultStr":"{\"title\":\"The difference between standard and average efficiencies of multijunction compared with single-junction concentrator cells\",\"authors\":\"Sarah R. Kurtz, J.M. Olson, P. Faine\",\"doi\":\"10.1016/0379-6787(91)90081-Y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The theoretical performances of ideal single- and multijunction cells are compared at 100 × concentration under a range of cloudless-sky conditions. The sensitivities of device performance to cell temperature and spectral variations are shown to depend on the number of junctions (one, two or three), the way in which the junctions are connected (series, parallel or independent), and the band gaps of the devices. The average performances of all of the multijunction devices surpass that of a single-junction GaAs device, but the inconsistency in performance of some of the multijunction devices is significant for large variations in cell temperature and incident spectrum. The choice of band gap and connection scheme is more important than the number of junctions in determining the consistency of device performance.</p></div>\",\"PeriodicalId\":101172,\"journal\":{\"name\":\"Solar Cells\",\"volume\":\"30 1\",\"pages\":\"Pages 501-513\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0379-6787(91)90081-Y\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Cells\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/037967879190081Y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Cells","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/037967879190081Y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The difference between standard and average efficiencies of multijunction compared with single-junction concentrator cells
The theoretical performances of ideal single- and multijunction cells are compared at 100 × concentration under a range of cloudless-sky conditions. The sensitivities of device performance to cell temperature and spectral variations are shown to depend on the number of junctions (one, two or three), the way in which the junctions are connected (series, parallel or independent), and the band gaps of the devices. The average performances of all of the multijunction devices surpass that of a single-junction GaAs device, but the inconsistency in performance of some of the multijunction devices is significant for large variations in cell temperature and incident spectrum. The choice of band gap and connection scheme is more important than the number of junctions in determining the consistency of device performance.