太阳能电池专用非晶/纳米晶硅复合薄膜的制备

B. Newton, Abu H. Safe, M. Benemara, S. Yu, H. Naseem
{"title":"太阳能电池专用非晶/纳米晶硅复合薄膜的制备","authors":"B. Newton, Abu H. Safe, M. Benemara, S. Yu, H. Naseem","doi":"10.1109/PVSC.2012.6317822","DOIUrl":null,"url":null,"abstract":"The absorption properties of amorphous silicon (α-Si) and the electron transport properties of nanocrystalline silicon are combined in a novel composite material for thin film silicon solar cells. In this work a composite film composed of α-Si with site specific areas of nanocrystalline material was created. Al was deposited through a SiO2 template containing nanometer sized apertures with an approximate diameter of 250 nm onto an α-Si film supported by a <;100>; crystalline silicon substrate. It was then annealed at 350°C. The annealing caused crystallization only at sites where the Al was in contact with the α-Si surface. The AIC created site specific three dimensional nanocrystalline structures embedded in a thin film of α-Si. After grain boundary passivation these nanocrystalline sites will provide pathways for charge carriers that are less defect dense than the α-Si film. TEM samples were fabricated from the composite film utilizing the focus ion beam. The growth characteristics of these 3D nanostructures and the α-Si thin film were characterized utilizing ESEM and the TEM.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"89 1","pages":"001220-001224"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication of site specific amorphous/nanocrystalline silicon composite thin film for solar cells\",\"authors\":\"B. Newton, Abu H. Safe, M. Benemara, S. Yu, H. Naseem\",\"doi\":\"10.1109/PVSC.2012.6317822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The absorption properties of amorphous silicon (α-Si) and the electron transport properties of nanocrystalline silicon are combined in a novel composite material for thin film silicon solar cells. In this work a composite film composed of α-Si with site specific areas of nanocrystalline material was created. Al was deposited through a SiO2 template containing nanometer sized apertures with an approximate diameter of 250 nm onto an α-Si film supported by a <;100>; crystalline silicon substrate. It was then annealed at 350°C. The annealing caused crystallization only at sites where the Al was in contact with the α-Si surface. The AIC created site specific three dimensional nanocrystalline structures embedded in a thin film of α-Si. After grain boundary passivation these nanocrystalline sites will provide pathways for charge carriers that are less defect dense than the α-Si film. TEM samples were fabricated from the composite film utilizing the focus ion beam. The growth characteristics of these 3D nanostructures and the α-Si thin film were characterized utilizing ESEM and the TEM.\",\"PeriodicalId\":6318,\"journal\":{\"name\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"volume\":\"89 1\",\"pages\":\"001220-001224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2012.6317822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6317822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将非晶硅(α-Si)的吸收特性和纳米晶硅的电子输运特性结合在一起,制备了一种新型薄膜硅太阳电池复合材料。本文制备了一种由α-Si和纳米晶材料的特定区域组成的复合薄膜。Al通过含有纳米孔径(直径约250 nm)的SiO2模板沉积在α-Si薄膜上;晶体硅衬底。然后在350℃下退火。退火只在Al与α-Si表面接触的部位产生结晶。AIC在α-Si薄膜中嵌入了特定位点的三维纳米晶体结构。晶界钝化后,这些纳米晶位将为缺陷密度小于α-Si薄膜的载流子提供通道。利用聚焦离子束制备了TEM样品。利用ESEM和TEM对三维纳米结构和α-Si薄膜的生长特性进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of site specific amorphous/nanocrystalline silicon composite thin film for solar cells
The absorption properties of amorphous silicon (α-Si) and the electron transport properties of nanocrystalline silicon are combined in a novel composite material for thin film silicon solar cells. In this work a composite film composed of α-Si with site specific areas of nanocrystalline material was created. Al was deposited through a SiO2 template containing nanometer sized apertures with an approximate diameter of 250 nm onto an α-Si film supported by a <;100>; crystalline silicon substrate. It was then annealed at 350°C. The annealing caused crystallization only at sites where the Al was in contact with the α-Si surface. The AIC created site specific three dimensional nanocrystalline structures embedded in a thin film of α-Si. After grain boundary passivation these nanocrystalline sites will provide pathways for charge carriers that are less defect dense than the α-Si film. TEM samples were fabricated from the composite film utilizing the focus ion beam. The growth characteristics of these 3D nanostructures and the α-Si thin film were characterized utilizing ESEM and the TEM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信