稀疏编码的多属性字典学习

Chen-Kuo Chiang, Te-Feng Su, Chih Yen, S. Lai
{"title":"稀疏编码的多属性字典学习","authors":"Chen-Kuo Chiang, Te-Feng Su, Chih Yen, S. Lai","doi":"10.1109/ICCV.2013.145","DOIUrl":null,"url":null,"abstract":"We present a multi-attributed dictionary learning algorithm for sparse coding. Considering training samples with multiple attributes, a new distance matrix is proposed by jointly incorporating data and attribute similarities. Then, an objective function is presented to learn category-dependent dictionaries that are compact (closeness of dictionary atoms based on data distance and attribute similarity), reconstructive (low reconstruction error with correct dictionary) and label-consistent (encouraging the labels of dictionary atoms to be similar). We have demonstrated our algorithm on action classification and face recognition tasks on several publicly available datasets. Experimental results with improved performance over previous dictionary learning methods are shown to validate the effectiveness of the proposed algorithm.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"9 1","pages":"1137-1144"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multi-attributed Dictionary Learning for Sparse Coding\",\"authors\":\"Chen-Kuo Chiang, Te-Feng Su, Chih Yen, S. Lai\",\"doi\":\"10.1109/ICCV.2013.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a multi-attributed dictionary learning algorithm for sparse coding. Considering training samples with multiple attributes, a new distance matrix is proposed by jointly incorporating data and attribute similarities. Then, an objective function is presented to learn category-dependent dictionaries that are compact (closeness of dictionary atoms based on data distance and attribute similarity), reconstructive (low reconstruction error with correct dictionary) and label-consistent (encouraging the labels of dictionary atoms to be similar). We have demonstrated our algorithm on action classification and face recognition tasks on several publicly available datasets. Experimental results with improved performance over previous dictionary learning methods are shown to validate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"9 1\",\"pages\":\"1137-1144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种稀疏编码的多属性字典学习算法。针对具有多个属性的训练样本,将数据和属性相似度结合,提出了一个新的距离矩阵。然后,提出了一个目标函数来学习紧凑型(基于数据距离和属性相似性的字典原子的紧密性)、重构型(使用正确的字典的低重构误差)和标签一致性(鼓励字典原子的标签相似)的类别依赖字典。我们已经在几个公开可用的数据集上演示了我们的算法在动作分类和人脸识别任务上的应用。实验结果表明,该算法的有效性优于以往的字典学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-attributed Dictionary Learning for Sparse Coding
We present a multi-attributed dictionary learning algorithm for sparse coding. Considering training samples with multiple attributes, a new distance matrix is proposed by jointly incorporating data and attribute similarities. Then, an objective function is presented to learn category-dependent dictionaries that are compact (closeness of dictionary atoms based on data distance and attribute similarity), reconstructive (low reconstruction error with correct dictionary) and label-consistent (encouraging the labels of dictionary atoms to be similar). We have demonstrated our algorithm on action classification and face recognition tasks on several publicly available datasets. Experimental results with improved performance over previous dictionary learning methods are shown to validate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信