InParformer:用于长期时间序列预测的具有交互平行关注的演化分解变压器

Haizhou Cao, Zhenhao Huang, Tiechui Yao, Jue Wang, Hui He, Yangang Wang
{"title":"InParformer:用于长期时间序列预测的具有交互平行关注的演化分解变压器","authors":"Haizhou Cao, Zhenhao Huang, Tiechui Yao, Jue Wang, Hui He, Yangang Wang","doi":"10.1609/aaai.v37i6.25845","DOIUrl":null,"url":null,"abstract":"Long-term time series forecasting (LTSF) provides substantial benefits for numerous real-world applications, whereas places essential demands on the model capacity to capture long-range dependencies. Recent Transformer-based models have significantly improved LTSF performance. It is worth noting that Transformer with the self-attention mechanism was originally proposed to model language sequences whose tokens (i.e., words) are discrete and highly semantic. However, unlike language sequences, most time series are sequential and continuous numeric points. Time steps with temporal redundancy are weakly semantic, and only leveraging time-domain tokens is hard to depict the overall properties of time series (e.g., the overall trend and periodic variations). To address these problems, we propose a novel Transformer-based forecasting model named InParformer with an Interactive Parallel Attention (InPar Attention) mechanism. The InPar Attention is proposed to learn long-range dependencies comprehensively in both frequency and time domains. To improve its learning capacity and efficiency, we further design several mechanisms, including query selection, key-value pair compression, and recombination. Moreover, InParformer is constructed with evolutionary seasonal-trend decomposition modules to enhance intricate temporal pattern extraction. Extensive experiments on six real-world benchmarks show that InParformer outperforms the state-of-the-art forecasting Transformers.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"177 1","pages":"6906-6915"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"InParformer: Evolutionary Decomposition Transformers with Interactive Parallel Attention for Long-Term Time Series Forecasting\",\"authors\":\"Haizhou Cao, Zhenhao Huang, Tiechui Yao, Jue Wang, Hui He, Yangang Wang\",\"doi\":\"10.1609/aaai.v37i6.25845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-term time series forecasting (LTSF) provides substantial benefits for numerous real-world applications, whereas places essential demands on the model capacity to capture long-range dependencies. Recent Transformer-based models have significantly improved LTSF performance. It is worth noting that Transformer with the self-attention mechanism was originally proposed to model language sequences whose tokens (i.e., words) are discrete and highly semantic. However, unlike language sequences, most time series are sequential and continuous numeric points. Time steps with temporal redundancy are weakly semantic, and only leveraging time-domain tokens is hard to depict the overall properties of time series (e.g., the overall trend and periodic variations). To address these problems, we propose a novel Transformer-based forecasting model named InParformer with an Interactive Parallel Attention (InPar Attention) mechanism. The InPar Attention is proposed to learn long-range dependencies comprehensively in both frequency and time domains. To improve its learning capacity and efficiency, we further design several mechanisms, including query selection, key-value pair compression, and recombination. Moreover, InParformer is constructed with evolutionary seasonal-trend decomposition modules to enhance intricate temporal pattern extraction. Extensive experiments on six real-world benchmarks show that InParformer outperforms the state-of-the-art forecasting Transformers.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"177 1\",\"pages\":\"6906-6915\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i6.25845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i6.25845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期时间序列预测(LTSF)为许多实际应用程序提供了实质性的好处,同时对模型捕获长期依赖关系的能力提出了基本要求。最近基于transformer的模型显著提高了LTSF的性能。值得注意的是,具有自关注机制的Transformer最初被提出用于对语言序列建模,这些语言序列的标记(例如,单词)是离散的且高度语义化的。然而,与语言序列不同,大多数时间序列是连续的和连续的数字点。具有时间冗余的时间步是弱语义的,仅利用时域标记很难描述时间序列的整体属性(例如,总体趋势和周期变化)。为了解决这些问题,我们提出了一种新的基于变压器的预测模型InParformer,该模型具有交互式并行注意(InPar Attention)机制。提出了InPar注意力,在频域和时域上全面学习远程依赖关系。为了提高其学习能力和效率,我们进一步设计了几种机制,包括查询选择、键值对压缩和重组。此外,InParformer构建了季节趋势演化分解模块,增强了复杂时间模式的提取能力。在六个现实世界基准上的广泛实验表明,InParformer优于最先进的预测变压器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
InParformer: Evolutionary Decomposition Transformers with Interactive Parallel Attention for Long-Term Time Series Forecasting
Long-term time series forecasting (LTSF) provides substantial benefits for numerous real-world applications, whereas places essential demands on the model capacity to capture long-range dependencies. Recent Transformer-based models have significantly improved LTSF performance. It is worth noting that Transformer with the self-attention mechanism was originally proposed to model language sequences whose tokens (i.e., words) are discrete and highly semantic. However, unlike language sequences, most time series are sequential and continuous numeric points. Time steps with temporal redundancy are weakly semantic, and only leveraging time-domain tokens is hard to depict the overall properties of time series (e.g., the overall trend and periodic variations). To address these problems, we propose a novel Transformer-based forecasting model named InParformer with an Interactive Parallel Attention (InPar Attention) mechanism. The InPar Attention is proposed to learn long-range dependencies comprehensively in both frequency and time domains. To improve its learning capacity and efficiency, we further design several mechanisms, including query selection, key-value pair compression, and recombination. Moreover, InParformer is constructed with evolutionary seasonal-trend decomposition modules to enhance intricate temporal pattern extraction. Extensive experiments on six real-world benchmarks show that InParformer outperforms the state-of-the-art forecasting Transformers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信