广义随机变量抛物型随机偏微分方程有限元近似的先验误差估计

Pub Date : 2015-02-19 DOI:10.1080/17442508.2014.989526
Christophe Audouze, P. Nair
{"title":"广义随机变量抛物型随机偏微分方程有限元近似的先验误差估计","authors":"Christophe Audouze, P. Nair","doi":"10.1080/17442508.2014.989526","DOIUrl":null,"url":null,"abstract":"We consider finite element approximations of parabolic stochastic partial differential equations (SPDEs) in conjunction with the -weighted temporal discretization scheme. We study the stability of the numerical scheme and provide a priori error estimates, using a result of Galvis and Sarkis [Approximating infinity-dimensional stochastic Darcy's equations without uniform ellipticity, SIAM J. Numer. Anal. 47(5) (2009), pp. 3624–3651] on elliptic SPDEs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A priori error estimates for finite element approximations of parabolic stochastic partial differential equations with generalized random variables\",\"authors\":\"Christophe Audouze, P. Nair\",\"doi\":\"10.1080/17442508.2014.989526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider finite element approximations of parabolic stochastic partial differential equations (SPDEs) in conjunction with the -weighted temporal discretization scheme. We study the stability of the numerical scheme and provide a priori error estimates, using a result of Galvis and Sarkis [Approximating infinity-dimensional stochastic Darcy's equations without uniform ellipticity, SIAM J. Numer. Anal. 47(5) (2009), pp. 3624–3651] on elliptic SPDEs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2014.989526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.989526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了抛物型随机偏微分方程(SPDEs)的有限元近似与加权时间离散方案。本文研究了数值格式的稳定性,并利用Galvis和Sarkis[近似无均匀椭圆的无限维随机达西方程,SIAM J. number]的结果提供了一个先验误差估计。论椭圆型SPDEs [j] .学报,47(5)(2009),pp. 3624-3651。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A priori error estimates for finite element approximations of parabolic stochastic partial differential equations with generalized random variables
We consider finite element approximations of parabolic stochastic partial differential equations (SPDEs) in conjunction with the -weighted temporal discretization scheme. We study the stability of the numerical scheme and provide a priori error estimates, using a result of Galvis and Sarkis [Approximating infinity-dimensional stochastic Darcy's equations without uniform ellipticity, SIAM J. Numer. Anal. 47(5) (2009), pp. 3624–3651] on elliptic SPDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信