广义大都市加速权下平均一致性的收敛性

V. Schwarz, Gabor Hannak, G. Matz
{"title":"广义大都市加速权下平均一致性的收敛性","authors":"V. Schwarz, Gabor Hannak, G. Matz","doi":"10.1109/ICASSP.2014.6854643","DOIUrl":null,"url":null,"abstract":"Average consensus is a well-studied method for distributed averaging. The convergence properties of average consensus depend on the averaging weights. Examples for commonly used weight designs are Metropolis-Hastings (MH) weights and constant weights. In this paper, we provide a complete convergence analysis for a generalized MH weight design that encompasses conventional MH as special case. More specifically, we formulate sufficient and necessary conditions for convergence. A main conclusion is that AC with MH weights is guaranteed to converge unless the underlying network is a regular bipartite graph.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"87 1","pages":"5442-5446"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"On the convergence of average consensus with generalized metropolis-hasting weights\",\"authors\":\"V. Schwarz, Gabor Hannak, G. Matz\",\"doi\":\"10.1109/ICASSP.2014.6854643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Average consensus is a well-studied method for distributed averaging. The convergence properties of average consensus depend on the averaging weights. Examples for commonly used weight designs are Metropolis-Hastings (MH) weights and constant weights. In this paper, we provide a complete convergence analysis for a generalized MH weight design that encompasses conventional MH as special case. More specifically, we formulate sufficient and necessary conditions for convergence. A main conclusion is that AC with MH weights is guaranteed to converge unless the underlying network is a regular bipartite graph.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"87 1\",\"pages\":\"5442-5446\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

平均一致性是一种被广泛研究的分布式平均方法。平均一致性的收敛性取决于平均权值。常用重量设计的例子是Metropolis-Hastings (MH)重量和恒重。在本文中,我们提供了一个完整的收敛分析广义MH权重设计,包括传统的MH作为特殊情况。更具体地说,我们给出了收敛的充要条件。一个主要结论是,除非底层网络是正则二部图,否则具有MH权值的AC保证收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the convergence of average consensus with generalized metropolis-hasting weights
Average consensus is a well-studied method for distributed averaging. The convergence properties of average consensus depend on the averaging weights. Examples for commonly used weight designs are Metropolis-Hastings (MH) weights and constant weights. In this paper, we provide a complete convergence analysis for a generalized MH weight design that encompasses conventional MH as special case. More specifically, we formulate sufficient and necessary conditions for convergence. A main conclusion is that AC with MH weights is guaranteed to converge unless the underlying network is a regular bipartite graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信