{"title":"Si和In0.3Ga0.7As块体mosfet的沟道缩放:蒙特卡罗研究","authors":"A. Islam, K. Kalna","doi":"10.1109/SNW.2010.5562543","DOIUrl":null,"url":null,"abstract":"The ITRS predicts that the scaling of planar CMOS technology will continue till the 22 nm [1] technology node and a possible extension is extremely tempting [2]. The desire to continue the scaling of planar technology is driven by lower costs when compared to novel, non-planar technology concepts like multi-gate architectures or nanowires [3]. However, experimental evidence suggests that carrier effective mobility and injection velocity will dramatically lower at very small gate lengths thus prohibiting the possibility of reaching the ballistic regime [4].","PeriodicalId":6433,"journal":{"name":"2010 Silicon Nanoelectronics Workshop","volume":"21 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel scaling in Si and In0.3Ga0.7As bulk MOSFETs: A Monte Carlo study\",\"authors\":\"A. Islam, K. Kalna\",\"doi\":\"10.1109/SNW.2010.5562543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ITRS predicts that the scaling of planar CMOS technology will continue till the 22 nm [1] technology node and a possible extension is extremely tempting [2]. The desire to continue the scaling of planar technology is driven by lower costs when compared to novel, non-planar technology concepts like multi-gate architectures or nanowires [3]. However, experimental evidence suggests that carrier effective mobility and injection velocity will dramatically lower at very small gate lengths thus prohibiting the possibility of reaching the ballistic regime [4].\",\"PeriodicalId\":6433,\"journal\":{\"name\":\"2010 Silicon Nanoelectronics Workshop\",\"volume\":\"21 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Silicon Nanoelectronics Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2010.5562543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Silicon Nanoelectronics Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2010.5562543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Channel scaling in Si and In0.3Ga0.7As bulk MOSFETs: A Monte Carlo study
The ITRS predicts that the scaling of planar CMOS technology will continue till the 22 nm [1] technology node and a possible extension is extremely tempting [2]. The desire to continue the scaling of planar technology is driven by lower costs when compared to novel, non-planar technology concepts like multi-gate architectures or nanowires [3]. However, experimental evidence suggests that carrier effective mobility and injection velocity will dramatically lower at very small gate lengths thus prohibiting the possibility of reaching the ballistic regime [4].