René Chambon , Denis Caillerie , Claudio Tamagnini
{"title":"有限变形的二次梯度塑性理论","authors":"René Chambon , Denis Caillerie , Claudio Tamagnini","doi":"10.1016/S1620-7742(01)01400-3","DOIUrl":null,"url":null,"abstract":"<div><p>Extending the previous work by Chambon et al. [2] to the finite deformation regime, a local second gradient theory of plasticity for <em>isotropic</em> materials with microstructure is developed based on the <em>multiplicative</em> decomposition of the deformation gradient, the <em>additive</em> decomposition of the second deformation gradient and the principle of maximum dissipation.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 11","pages":"Pages 797-802"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01400-3","citationCount":"22","resultStr":"{\"title\":\"A finite deformation second gradient theory of plasticity\",\"authors\":\"René Chambon , Denis Caillerie , Claudio Tamagnini\",\"doi\":\"10.1016/S1620-7742(01)01400-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extending the previous work by Chambon et al. [2] to the finite deformation regime, a local second gradient theory of plasticity for <em>isotropic</em> materials with microstructure is developed based on the <em>multiplicative</em> decomposition of the deformation gradient, the <em>additive</em> decomposition of the second deformation gradient and the principle of maximum dissipation.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 11\",\"pages\":\"Pages 797-802\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01400-3\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201014003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201014003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A finite deformation second gradient theory of plasticity
Extending the previous work by Chambon et al. [2] to the finite deformation regime, a local second gradient theory of plasticity for isotropic materials with microstructure is developed based on the multiplicative decomposition of the deformation gradient, the additive decomposition of the second deformation gradient and the principle of maximum dissipation.