{"title":"刚体力学中的逆动力学","authors":"S. Federico, Mawafag F. Alhasadi","doi":"10.2298/tam221109011f","DOIUrl":null,"url":null,"abstract":"Inverse Dynamics is used to calculate the forces and moments in the joints of multibody systems investigated in fields such as Biomechanics or Robotics. In a didactic spirit, this paper begins with an overview of the derivations of the kinematical and dynamical equations of rigid bodies from the point of view of modern Continuum Mechanics. Then, it introduces a matrix formulation for the solution of Inverse Dynamics problems and, finally, reports a simple two-dimensional example of application to a problem in Biomechanics.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inverse dynamics in rigid body mechanics\",\"authors\":\"S. Federico, Mawafag F. Alhasadi\",\"doi\":\"10.2298/tam221109011f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverse Dynamics is used to calculate the forces and moments in the joints of multibody systems investigated in fields such as Biomechanics or Robotics. In a didactic spirit, this paper begins with an overview of the derivations of the kinematical and dynamical equations of rigid bodies from the point of view of modern Continuum Mechanics. Then, it introduces a matrix formulation for the solution of Inverse Dynamics problems and, finally, reports a simple two-dimensional example of application to a problem in Biomechanics.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tam221109011f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam221109011f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Inverse Dynamics is used to calculate the forces and moments in the joints of multibody systems investigated in fields such as Biomechanics or Robotics. In a didactic spirit, this paper begins with an overview of the derivations of the kinematical and dynamical equations of rigid bodies from the point of view of modern Continuum Mechanics. Then, it introduces a matrix formulation for the solution of Inverse Dynamics problems and, finally, reports a simple two-dimensional example of application to a problem in Biomechanics.
期刊介绍:
Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.