经验

M. Bosu, Stephen G. MacDonell
{"title":"经验","authors":"M. Bosu, Stephen G. MacDonell","doi":"10.1145/3328746","DOIUrl":null,"url":null,"abstract":"Data is a cornerstone of empirical software engineering (ESE) research and practice. Data underpin numerous process and project management activities, including the estimation of development effort and the prediction of the likely location and severity of defects in code. Serious questions have been raised, however, over the quality of the data used in ESE. Data quality problems caused by noise, outliers, and incompleteness have been noted as being especially prevalent. Other quality issues, although also potentially important, have received less attention. In this study, we assess the quality of 13 datasets that have been used extensively in research on software effort estimation. The quality issues considered in this article draw on a taxonomy that we published previously based on a systematic mapping of data quality issues in ESE. Our contributions are as follows: (1) an evaluation of the “fitness for purpose” of these commonly used datasets and (2) an assessment of the utility of the taxonomy in terms of dataset benchmarking. We also propose a template that could be used to both improve the ESE data collection/submission process and to evaluate other such datasets, contributing to enhanced awareness of data quality issues in the ESE community and, in time, the availability and use of higher-quality datasets.","PeriodicalId":15582,"journal":{"name":"Journal of Data and Information Quality (JDIQ)","volume":"260 1","pages":"1 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experience\",\"authors\":\"M. Bosu, Stephen G. MacDonell\",\"doi\":\"10.1145/3328746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data is a cornerstone of empirical software engineering (ESE) research and practice. Data underpin numerous process and project management activities, including the estimation of development effort and the prediction of the likely location and severity of defects in code. Serious questions have been raised, however, over the quality of the data used in ESE. Data quality problems caused by noise, outliers, and incompleteness have been noted as being especially prevalent. Other quality issues, although also potentially important, have received less attention. In this study, we assess the quality of 13 datasets that have been used extensively in research on software effort estimation. The quality issues considered in this article draw on a taxonomy that we published previously based on a systematic mapping of data quality issues in ESE. Our contributions are as follows: (1) an evaluation of the “fitness for purpose” of these commonly used datasets and (2) an assessment of the utility of the taxonomy in terms of dataset benchmarking. We also propose a template that could be used to both improve the ESE data collection/submission process and to evaluate other such datasets, contributing to enhanced awareness of data quality issues in the ESE community and, in time, the availability and use of higher-quality datasets.\",\"PeriodicalId\":15582,\"journal\":{\"name\":\"Journal of Data and Information Quality (JDIQ)\",\"volume\":\"260 1\",\"pages\":\"1 - 38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Data and Information Quality (JDIQ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3328746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Quality (JDIQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数据是实证软件工程(ESE)研究和实践的基石。数据支撑着大量的过程和项目管理活动,包括对开发工作的估计和对代码中缺陷的可能位置和严重程度的预测。然而,人们对ESE使用的数据质量提出了严重的质疑。由噪声、异常值和不完整性引起的数据质量问题特别普遍。其他质量问题虽然也可能很重要,但受到的关注较少。在这项研究中,我们评估了13个数据集的质量,这些数据集在软件工作量估计研究中被广泛使用。本文中考虑的质量问题借鉴了我们之前发布的一个分类法,该分类法基于ESE中数据质量问题的系统映射。我们的贡献如下:(1)对这些常用数据集的“适应度”进行评估;(2)对分类在数据集基准测试方面的效用进行评估。我们还提出了一个模板,可用于改进ESE数据收集/提交过程,并评估其他此类数据集,有助于提高ESE社区对数据质量问题的认识,并及时提供和使用更高质量的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experience
Data is a cornerstone of empirical software engineering (ESE) research and practice. Data underpin numerous process and project management activities, including the estimation of development effort and the prediction of the likely location and severity of defects in code. Serious questions have been raised, however, over the quality of the data used in ESE. Data quality problems caused by noise, outliers, and incompleteness have been noted as being especially prevalent. Other quality issues, although also potentially important, have received less attention. In this study, we assess the quality of 13 datasets that have been used extensively in research on software effort estimation. The quality issues considered in this article draw on a taxonomy that we published previously based on a systematic mapping of data quality issues in ESE. Our contributions are as follows: (1) an evaluation of the “fitness for purpose” of these commonly used datasets and (2) an assessment of the utility of the taxonomy in terms of dataset benchmarking. We also propose a template that could be used to both improve the ESE data collection/submission process and to evaluate other such datasets, contributing to enhanced awareness of data quality issues in the ESE community and, in time, the availability and use of higher-quality datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信