TetriSched:动态异构集群中具有自适应计划提前的全局重调度

Alexey Tumanov, T. Zhu, J. Park, M. Kozuch, Mor Harchol-Balter, G. Ganger
{"title":"TetriSched:动态异构集群中具有自适应计划提前的全局重调度","authors":"Alexey Tumanov, T. Zhu, J. Park, M. Kozuch, Mor Harchol-Balter, G. Ganger","doi":"10.1145/2901318.2901355","DOIUrl":null,"url":null,"abstract":"TetriSched is a scheduler that works in tandem with a calendaring reservation system to continuously re-evaluate the immediate-term scheduling plan for all pending jobs (including those with reservations and best-effort jobs) on each scheduling cycle. TetriSched leverages information supplied by the reservation system about jobs' deadlines and estimated runtimes to plan ahead in deciding whether to wait for a busy preferred resource type (e.g., machine with a GPU) or fall back to less preferred placement options. Plan-ahead affords significant flexibility in handling mis-estimates in job runtimes specified at reservation time. Integrated with the main reservation system in Hadoop YARN, TetriSched is experimentally shown to achieve significantly higher SLO attainment and cluster utilization than the best-configured YARN reservation and CapacityScheduler stack deployed on a real 256 node cluster.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":"{\"title\":\"TetriSched: global rescheduling with adaptive plan-ahead in dynamic heterogeneous clusters\",\"authors\":\"Alexey Tumanov, T. Zhu, J. Park, M. Kozuch, Mor Harchol-Balter, G. Ganger\",\"doi\":\"10.1145/2901318.2901355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TetriSched is a scheduler that works in tandem with a calendaring reservation system to continuously re-evaluate the immediate-term scheduling plan for all pending jobs (including those with reservations and best-effort jobs) on each scheduling cycle. TetriSched leverages information supplied by the reservation system about jobs' deadlines and estimated runtimes to plan ahead in deciding whether to wait for a busy preferred resource type (e.g., machine with a GPU) or fall back to less preferred placement options. Plan-ahead affords significant flexibility in handling mis-estimates in job runtimes specified at reservation time. Integrated with the main reservation system in Hadoop YARN, TetriSched is experimentally shown to achieve significantly higher SLO attainment and cluster utilization than the best-configured YARN reservation and CapacityScheduler stack deployed on a real 256 node cluster.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"176\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2901318.2901355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901318.2901355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 176

摘要

TetriSched是一个调度器,它与日历预约系统协同工作,在每个调度周期中不断地重新评估所有待处理作业(包括那些有预约和最努力工作的作业)的近期调度计划。TetriSched利用预定系统提供的有关作业截止日期和估计运行时间的信息,提前计划决定是否等待繁忙的首选资源类型(例如,带有GPU的机器)或退回到较少首选的放置选项。提前计划在处理预定时指定的作业运行时的错误估计方面提供了极大的灵活性。与Hadoop YARN中的主预留系统集成,实验表明,与部署在256节点集群上的最佳配置YARN预留和CapacityScheduler堆栈相比,TetriSched可以实现更高的SLO和集群利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TetriSched: global rescheduling with adaptive plan-ahead in dynamic heterogeneous clusters
TetriSched is a scheduler that works in tandem with a calendaring reservation system to continuously re-evaluate the immediate-term scheduling plan for all pending jobs (including those with reservations and best-effort jobs) on each scheduling cycle. TetriSched leverages information supplied by the reservation system about jobs' deadlines and estimated runtimes to plan ahead in deciding whether to wait for a busy preferred resource type (e.g., machine with a GPU) or fall back to less preferred placement options. Plan-ahead affords significant flexibility in handling mis-estimates in job runtimes specified at reservation time. Integrated with the main reservation system in Hadoop YARN, TetriSched is experimentally shown to achieve significantly higher SLO attainment and cluster utilization than the best-configured YARN reservation and CapacityScheduler stack deployed on a real 256 node cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信