Владимир Александрович Морозов, Н. В. Егоров, В. В. Трофимов, К. А. Никифоров, И. И. Закиров, Вадим Маркович Кац, В.А. Ильин, Александр Сергеевич Иванов
{"title":"穿孔和穿孔条件下碳化硅基质阴极特征","authors":"Владимир Александрович Морозов, Н. В. Егоров, В. В. Трофимов, К. А. Никифоров, И. И. Закиров, Вадим Маркович Кац, В.А. Ильин, Александр Сергеевич Иванов","doi":"10.21883/jtf.2023.04.55046.257-22","DOIUrl":null,"url":null,"abstract":"This study assesses promising field electron sources based on silicon carbide monolithic field emission array (FEA). FEA is fabricated on single-crystal wafers of silicon carbide (0001C) 6H-SiC of n-type conductivity using the technology of two-stage reactive ion etching in SF6/O2/Ar atmosphere. To implement conditions close to breakdown, an experimental setup based on high-voltage narrow pulses generating device GKVI-300 was used. A series of nanosecond voltage pulses with amplitudes from 120 to 250 kV was generated. To study the characteristics of the FEA in the pre-breakdown state, the beam of field emitted electrons was separated from the ion torch or cathode plasma, formed in the following breakdown phases, by placing a 50-μm-thick titanium foil under zero potential into the interelectrode gap. Current-voltage characteristics of peak-currents vs. peak-voltages passing through the foil are close to rectilinear in the Fowler-Nordheim coordinates. The current-voltage characteristics plotted for each of the pulses along increasing and decreasing branches show a discrepancy (hysteresis). After the experiments, the silicon carbide cathode FEA was studied in a scanning electron microscope.","PeriodicalId":24036,"journal":{"name":"Журнал технической физики","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Характеристики матричного катода из карбида кремния в предпробойных и пробойных условиях\",\"authors\":\"Владимир Александрович Морозов, Н. В. Егоров, В. В. Трофимов, К. А. Никифоров, И. И. Закиров, Вадим Маркович Кац, В.А. Ильин, Александр Сергеевич Иванов\",\"doi\":\"10.21883/jtf.2023.04.55046.257-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study assesses promising field electron sources based on silicon carbide monolithic field emission array (FEA). FEA is fabricated on single-crystal wafers of silicon carbide (0001C) 6H-SiC of n-type conductivity using the technology of two-stage reactive ion etching in SF6/O2/Ar atmosphere. To implement conditions close to breakdown, an experimental setup based on high-voltage narrow pulses generating device GKVI-300 was used. A series of nanosecond voltage pulses with amplitudes from 120 to 250 kV was generated. To study the characteristics of the FEA in the pre-breakdown state, the beam of field emitted electrons was separated from the ion torch or cathode plasma, formed in the following breakdown phases, by placing a 50-μm-thick titanium foil under zero potential into the interelectrode gap. Current-voltage characteristics of peak-currents vs. peak-voltages passing through the foil are close to rectilinear in the Fowler-Nordheim coordinates. The current-voltage characteristics plotted for each of the pulses along increasing and decreasing branches show a discrepancy (hysteresis). After the experiments, the silicon carbide cathode FEA was studied in a scanning electron microscope.\",\"PeriodicalId\":24036,\"journal\":{\"name\":\"Журнал технической физики\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Журнал технической физики\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21883/jtf.2023.04.55046.257-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Журнал технической физики","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21883/jtf.2023.04.55046.257-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Характеристики матричного катода из карбида кремния в предпробойных и пробойных условиях
This study assesses promising field electron sources based on silicon carbide monolithic field emission array (FEA). FEA is fabricated on single-crystal wafers of silicon carbide (0001C) 6H-SiC of n-type conductivity using the technology of two-stage reactive ion etching in SF6/O2/Ar atmosphere. To implement conditions close to breakdown, an experimental setup based on high-voltage narrow pulses generating device GKVI-300 was used. A series of nanosecond voltage pulses with amplitudes from 120 to 250 kV was generated. To study the characteristics of the FEA in the pre-breakdown state, the beam of field emitted electrons was separated from the ion torch or cathode plasma, formed in the following breakdown phases, by placing a 50-μm-thick titanium foil under zero potential into the interelectrode gap. Current-voltage characteristics of peak-currents vs. peak-voltages passing through the foil are close to rectilinear in the Fowler-Nordheim coordinates. The current-voltage characteristics plotted for each of the pulses along increasing and decreasing branches show a discrepancy (hysteresis). After the experiments, the silicon carbide cathode FEA was studied in a scanning electron microscope.