Zihao W. Wang, Peiqi Duan, O. Cossairt, A. Katsaggelos, Tiejun Huang, Boxin Shi
{"title":"高分辨率噪声鲁棒成像中强度图像和神经形态事件的联合滤波","authors":"Zihao W. Wang, Peiqi Duan, O. Cossairt, A. Katsaggelos, Tiejun Huang, Boxin Shi","doi":"10.1109/cvpr42600.2020.00168","DOIUrl":null,"url":null,"abstract":"We present a novel computational imaging system with high resolution and low noise. Our system consists of a traditional video camera which captures high-resolution intensity images, and an event camera which encodes high-speed motion as a stream of asynchronous binary events. To process the hybrid input, we propose a unifying framework that first bridges the two sensing modalities via a noise-robust motion compensation model, and then performs joint image filtering. The filtered output represents the temporal gradient of the captured space-time volume, which can be viewed as motion-compensated event frames with high resolution and low noise. Therefore, the output can be widely applied to many existing event-based algorithms that are highly dependent on spatial resolution and noise robustness. In experimental results performed on both publicly available datasets as well as our contributing RGB-DAVIS dataset, we show systematic performance improvement in applications such as high frame-rate video synthesis, feature/corner detection and tracking, as well as high dynamic range image reconstruction.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"49 1","pages":"1606-1616"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Joint Filtering of Intensity Images and Neuromorphic Events for High-Resolution Noise-Robust Imaging\",\"authors\":\"Zihao W. Wang, Peiqi Duan, O. Cossairt, A. Katsaggelos, Tiejun Huang, Boxin Shi\",\"doi\":\"10.1109/cvpr42600.2020.00168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel computational imaging system with high resolution and low noise. Our system consists of a traditional video camera which captures high-resolution intensity images, and an event camera which encodes high-speed motion as a stream of asynchronous binary events. To process the hybrid input, we propose a unifying framework that first bridges the two sensing modalities via a noise-robust motion compensation model, and then performs joint image filtering. The filtered output represents the temporal gradient of the captured space-time volume, which can be viewed as motion-compensated event frames with high resolution and low noise. Therefore, the output can be widely applied to many existing event-based algorithms that are highly dependent on spatial resolution and noise robustness. In experimental results performed on both publicly available datasets as well as our contributing RGB-DAVIS dataset, we show systematic performance improvement in applications such as high frame-rate video synthesis, feature/corner detection and tracking, as well as high dynamic range image reconstruction.\",\"PeriodicalId\":6715,\"journal\":{\"name\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"49 1\",\"pages\":\"1606-1616\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvpr42600.2020.00168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint Filtering of Intensity Images and Neuromorphic Events for High-Resolution Noise-Robust Imaging
We present a novel computational imaging system with high resolution and low noise. Our system consists of a traditional video camera which captures high-resolution intensity images, and an event camera which encodes high-speed motion as a stream of asynchronous binary events. To process the hybrid input, we propose a unifying framework that first bridges the two sensing modalities via a noise-robust motion compensation model, and then performs joint image filtering. The filtered output represents the temporal gradient of the captured space-time volume, which can be viewed as motion-compensated event frames with high resolution and low noise. Therefore, the output can be widely applied to many existing event-based algorithms that are highly dependent on spatial resolution and noise robustness. In experimental results performed on both publicly available datasets as well as our contributing RGB-DAVIS dataset, we show systematic performance improvement in applications such as high frame-rate video synthesis, feature/corner detection and tracking, as well as high dynamic range image reconstruction.