一种新的滑坡土拱应力减小模型

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
Xing-ming Li, E. Yan, Miao Sun, Xiangqian Yao, Shuo Li, Cheng Gao, Qian Chen
{"title":"一种新的滑坡土拱应力减小模型","authors":"Xing-ming Li, E. Yan, Miao Sun, Xiangqian Yao, Shuo Li, Cheng Gao, Qian Chen","doi":"10.3311/ppci.22054","DOIUrl":null,"url":null,"abstract":"Stabilizing piles are extensively used as an effective landslide control treatment, and the soil arching effect is the key element for the performance of the pile system. Most previous studies on soil arching effect and its application in stabilizing piles were conducted with laboratory tests and numerical simulations, while limited efforts have been dedicated to the analytical characterization of such a soil-structure interaction. In this paper, a new stress-reduction model for soil arch in landslides is established by theoretical derivation. Our model calculation has demonstrated an exponential reduction in the stress along the direction of slipping between and behind stabilizing piles and thus justifies the observations of laboratory tests and numerical simulations. Thereafter, the analytical solutions to the two key arch shape parameters, namely the inclination angle at the foothold and the thickness of soil arch, are derived based on the proposed stress-reduction model. Then, the ultimate bearing capacity of soil arch between and behind stabilizing piles is subsequently calculated, and a three-level load sharing model for landslides is thus proposed based on the stress-reduction mode. The load sharing model can well capture the stage characteristics of the interaction between landslide mass and stabilizing piles. Finally, the calculation model of spacing between stabilizing piles is established based on the proposed stress-reduction model, and it turns to be good in field application. The findings of this study can contribute to a better understanding of the soil arching effect as well as a better design of the stabilizing piles.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Stress-reduction Model for Soil Arch in Landslides\",\"authors\":\"Xing-ming Li, E. Yan, Miao Sun, Xiangqian Yao, Shuo Li, Cheng Gao, Qian Chen\",\"doi\":\"10.3311/ppci.22054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stabilizing piles are extensively used as an effective landslide control treatment, and the soil arching effect is the key element for the performance of the pile system. Most previous studies on soil arching effect and its application in stabilizing piles were conducted with laboratory tests and numerical simulations, while limited efforts have been dedicated to the analytical characterization of such a soil-structure interaction. In this paper, a new stress-reduction model for soil arch in landslides is established by theoretical derivation. Our model calculation has demonstrated an exponential reduction in the stress along the direction of slipping between and behind stabilizing piles and thus justifies the observations of laboratory tests and numerical simulations. Thereafter, the analytical solutions to the two key arch shape parameters, namely the inclination angle at the foothold and the thickness of soil arch, are derived based on the proposed stress-reduction model. Then, the ultimate bearing capacity of soil arch between and behind stabilizing piles is subsequently calculated, and a three-level load sharing model for landslides is thus proposed based on the stress-reduction mode. The load sharing model can well capture the stage characteristics of the interaction between landslide mass and stabilizing piles. Finally, the calculation model of spacing between stabilizing piles is established based on the proposed stress-reduction model, and it turns to be good in field application. The findings of this study can contribute to a better understanding of the soil arching effect as well as a better design of the stabilizing piles.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.22054\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22054","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

稳定桩作为一种有效的滑坡治理手段被广泛应用,而土拱效应是影响稳定桩体系性能的关键因素。以往关于土拱效应及其在稳定桩中的应用的研究大多是通过室内试验和数值模拟进行的,而对这种土-结构相互作用的解析表征研究较少。本文通过理论推导,建立了一种新的滑坡土拱减应力模型。我们的模型计算表明,沿稳定桩之间和桩后滑动方向的应力呈指数减小,从而证明了实验室试验和数值模拟的观察结果是正确的。然后,基于所提出的应力减小模型,推导出了两个关键拱形参数——立足点倾角和土拱厚度的解析解。在此基础上,计算了稳定桩间和桩后土拱的极限承载力,提出了基于应力减小模型的滑坡三级荷载分担模型。该荷载分担模型较好地反映了滑坡体与稳定桩相互作用的阶段特征。最后,在此基础上建立了稳定桩间距的计算模型,并在现场应用中取得了良好的效果。研究结果有助于更好地理解土拱效应,更好地设计稳定桩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Stress-reduction Model for Soil Arch in Landslides
Stabilizing piles are extensively used as an effective landslide control treatment, and the soil arching effect is the key element for the performance of the pile system. Most previous studies on soil arching effect and its application in stabilizing piles were conducted with laboratory tests and numerical simulations, while limited efforts have been dedicated to the analytical characterization of such a soil-structure interaction. In this paper, a new stress-reduction model for soil arch in landslides is established by theoretical derivation. Our model calculation has demonstrated an exponential reduction in the stress along the direction of slipping between and behind stabilizing piles and thus justifies the observations of laboratory tests and numerical simulations. Thereafter, the analytical solutions to the two key arch shape parameters, namely the inclination angle at the foothold and the thickness of soil arch, are derived based on the proposed stress-reduction model. Then, the ultimate bearing capacity of soil arch between and behind stabilizing piles is subsequently calculated, and a three-level load sharing model for landslides is thus proposed based on the stress-reduction mode. The load sharing model can well capture the stage characteristics of the interaction between landslide mass and stabilizing piles. Finally, the calculation model of spacing between stabilizing piles is established based on the proposed stress-reduction model, and it turns to be good in field application. The findings of this study can contribute to a better understanding of the soil arching effect as well as a better design of the stabilizing piles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodica Polytechnica-Civil Engineering
Periodica Polytechnica-Civil Engineering 工程技术-工程:土木
CiteScore
3.40
自引率
16.70%
发文量
89
审稿时长
12 months
期刊介绍: Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly. Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering. The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信