{"title":"一类具有奇异和次线性势的四阶非线性特征值问题的多重解","authors":"Csaba Farkas, I. Mezei, Zsuzsanna-Timea Nagy","doi":"10.24193/subbmath.2023.1.10","DOIUrl":null,"url":null,"abstract":"\"Let $(M,g)$ be a Cartan-Hadamard manifold. For certain positive numbers $\\mu$ and $\\lambda$, we establish the multiplicity of solutions to the problem $$\\Delta_g^2 u-\\Delta_g u+u=\\mu \\frac{u}{d_g(x_0,x)^4}+\\lambda \\alpha(x)f(u),\\ \\mbox{ in } M,$$ where $x_0\\in M$, while $f:\\R\\to\\R$ is continuous function, superlinear at zero and sublinear at infinity.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"177 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solution for a fourth-order nonlinear eigenvalue problem with singular and sublinear potential\",\"authors\":\"Csaba Farkas, I. Mezei, Zsuzsanna-Timea Nagy\",\"doi\":\"10.24193/subbmath.2023.1.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Let $(M,g)$ be a Cartan-Hadamard manifold. For certain positive numbers $\\\\mu$ and $\\\\lambda$, we establish the multiplicity of solutions to the problem $$\\\\Delta_g^2 u-\\\\Delta_g u+u=\\\\mu \\\\frac{u}{d_g(x_0,x)^4}+\\\\lambda \\\\alpha(x)f(u),\\\\ \\\\mbox{ in } M,$$ where $x_0\\\\in M$, while $f:\\\\R\\\\to\\\\R$ is continuous function, superlinear at zero and sublinear at infinity.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2023.1.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple solution for a fourth-order nonlinear eigenvalue problem with singular and sublinear potential
"Let $(M,g)$ be a Cartan-Hadamard manifold. For certain positive numbers $\mu$ and $\lambda$, we establish the multiplicity of solutions to the problem $$\Delta_g^2 u-\Delta_g u+u=\mu \frac{u}{d_g(x_0,x)^4}+\lambda \alpha(x)f(u),\ \mbox{ in } M,$$ where $x_0\in M$, while $f:\R\to\R$ is continuous function, superlinear at zero and sublinear at infinity."