基于CombNET和动态频谱特征的说话人依赖100字识别

T. Kitamura, K. Nishioka, A. Iwata, E. Hayahara
{"title":"基于CombNET和动态频谱特征的说话人依赖100字识别","authors":"T. Kitamura, K. Nishioka, A. Iwata, E. Hayahara","doi":"10.1109/MWSCAS.1991.252132","DOIUrl":null,"url":null,"abstract":"Present speaker-dependent 100-word recognition using CombNET, which consists of a four-layered neural network with a comb structure, and dynamic spectral features of speech based on a two-dimensional mel-cepstrum. CombNET consists of two types of neural network. The first one is a stem network which utilizes a self-organizing algorithm and roughly classifies an input pattern. The second one consists of many branch networks using a back-propagation algorithm and precisely classifies the pattern. Experimental results on speaker-dependent word recognition for 100 Japanese city names uttered by nine male speakers show that the recognition accuracy is 97.3%.<<ETX>>","PeriodicalId":6453,"journal":{"name":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","volume":"50 1","pages":"83-86 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Speaker-dependent 100 word recognition using CombNET and dynamic spectral features of speech\",\"authors\":\"T. Kitamura, K. Nishioka, A. Iwata, E. Hayahara\",\"doi\":\"10.1109/MWSCAS.1991.252132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present speaker-dependent 100-word recognition using CombNET, which consists of a four-layered neural network with a comb structure, and dynamic spectral features of speech based on a two-dimensional mel-cepstrum. CombNET consists of two types of neural network. The first one is a stem network which utilizes a self-organizing algorithm and roughly classifies an input pattern. The second one consists of many branch networks using a back-propagation algorithm and precisely classifies the pattern. Experimental results on speaker-dependent word recognition for 100 Japanese city names uttered by nine male speakers show that the recognition accuracy is 97.3%.<<ETX>>\",\"PeriodicalId\":6453,\"journal\":{\"name\":\"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems\",\"volume\":\"50 1\",\"pages\":\"83-86 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1991.252132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1991.252132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于梳子结构的四层神经网络和基于二维mel-倒谱的语音动态频谱特征,提出了基于说话人的100字识别方法。CombNET由两类神经网络组成。第一种是利用自组织算法对输入模式进行粗略分类的干网络。第二种方法使用反向传播算法由多个分支网络组成,并对模式进行精确分类。对9名男性说话人说出的100个日本城市名进行了基于说话人的词识别实验,结果表明,该方法的识别准确率为97.3%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speaker-dependent 100 word recognition using CombNET and dynamic spectral features of speech
Present speaker-dependent 100-word recognition using CombNET, which consists of a four-layered neural network with a comb structure, and dynamic spectral features of speech based on a two-dimensional mel-cepstrum. CombNET consists of two types of neural network. The first one is a stem network which utilizes a self-organizing algorithm and roughly classifies an input pattern. The second one consists of many branch networks using a back-propagation algorithm and precisely classifies the pattern. Experimental results on speaker-dependent word recognition for 100 Japanese city names uttered by nine male speakers show that the recognition accuracy is 97.3%.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信