{"title":"一种带有状态测量、替换突变、汉明距离计算和2-Opt算子的改进模拟卡尔曼滤波器优化器","authors":"Suhazri Amrin Rahmad, Z. Ibrahim, Z. Yusof","doi":"10.1109/SCOReD53546.2021.9652702","DOIUrl":null,"url":null,"abstract":"The simulated Kalman filter (SKF) is an algorithm for population-based optimization based on the Kalman filter framework. Each agent in SKF is treated as a Kalman filter. To find the global optimum, the SKF employs a Kalman filter mechanism that includes prediction, measurement, and estimate. However, the SKF is limited to operating in the numerical search space only. Numerous techniques and modifications have been made to numerical meta-heuristic algorithms in the literature in order to enable them to operate in a discrete search space. This paper presents modifications to measurement and estimation in SKF to accommodate the discrete search space. The modified algorithm is called Discrete Simulated Kalman Filter Optimizer (DSKFO). Additionally, the DSKFO algorithm incorporates the 2-opt operator to improve the solution in solving the travelling salesman problem (TSP). The DSKFO algorithm was compared against four other combinatorial SKF algorithms and outperformed them all.","PeriodicalId":6762,"journal":{"name":"2021 IEEE 19th Student Conference on Research and Development (SCOReD)","volume":"267 1","pages":"91-95"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Simulated Kalman Filter Optimizer with State Measurement, Substitution Mutation, Hamming Distance Calculation, and 2-Opt Operator\",\"authors\":\"Suhazri Amrin Rahmad, Z. Ibrahim, Z. Yusof\",\"doi\":\"10.1109/SCOReD53546.2021.9652702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simulated Kalman filter (SKF) is an algorithm for population-based optimization based on the Kalman filter framework. Each agent in SKF is treated as a Kalman filter. To find the global optimum, the SKF employs a Kalman filter mechanism that includes prediction, measurement, and estimate. However, the SKF is limited to operating in the numerical search space only. Numerous techniques and modifications have been made to numerical meta-heuristic algorithms in the literature in order to enable them to operate in a discrete search space. This paper presents modifications to measurement and estimation in SKF to accommodate the discrete search space. The modified algorithm is called Discrete Simulated Kalman Filter Optimizer (DSKFO). Additionally, the DSKFO algorithm incorporates the 2-opt operator to improve the solution in solving the travelling salesman problem (TSP). The DSKFO algorithm was compared against four other combinatorial SKF algorithms and outperformed them all.\",\"PeriodicalId\":6762,\"journal\":{\"name\":\"2021 IEEE 19th Student Conference on Research and Development (SCOReD)\",\"volume\":\"267 1\",\"pages\":\"91-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th Student Conference on Research and Development (SCOReD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCOReD53546.2021.9652702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCOReD53546.2021.9652702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Modified Simulated Kalman Filter Optimizer with State Measurement, Substitution Mutation, Hamming Distance Calculation, and 2-Opt Operator
The simulated Kalman filter (SKF) is an algorithm for population-based optimization based on the Kalman filter framework. Each agent in SKF is treated as a Kalman filter. To find the global optimum, the SKF employs a Kalman filter mechanism that includes prediction, measurement, and estimate. However, the SKF is limited to operating in the numerical search space only. Numerous techniques and modifications have been made to numerical meta-heuristic algorithms in the literature in order to enable them to operate in a discrete search space. This paper presents modifications to measurement and estimation in SKF to accommodate the discrete search space. The modified algorithm is called Discrete Simulated Kalman Filter Optimizer (DSKFO). Additionally, the DSKFO algorithm incorporates the 2-opt operator to improve the solution in solving the travelling salesman problem (TSP). The DSKFO algorithm was compared against four other combinatorial SKF algorithms and outperformed them all.