作为奇异值分解概率图像的概率潜在语义分析概化

IF 1 Q3 Mathematics
Pau Figuera Vinué, P. G. Bringas
{"title":"作为奇异值分解概率图像的概率潜在语义分析概化","authors":"Pau Figuera Vinué, P. G. Bringas","doi":"10.2991/jsta.d.200605.001","DOIUrl":null,"url":null,"abstract":"The Probabilistic Latent Semantic Analysis has been related with the Singular Value Decomposition. Several problems occur when this comparative is done. Data class restrictions and the existence of several local optima mask the relation, being a formal analogy without any real significance. Moreover, the computational difficulty in terms of time and memory limits the technique applicability. In this work, we use the Nonnegative Matrix Factorization with the Kullback–Leibler divergence to prove, when the number of model components is enough and a limit condition is reached, that the Singular Value Decomposition and the Probabilistic Latent Semantic Analysis empirical distributions are arbitrary close. Under such conditions, the Nonnegative Matrix Factorization and the Probabilistic Latent Semantic Analysis equality is obtained. With this result, the Singular Value Decomposition of every nonnegative entries matrix converges to the general case Probabilistic Latent Semantic Analysis results and constitutes the unique probabilistic image. Moreover, a faster algorithm for the Probabilistic Latent Semantic Analysis is provided.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":"56 1","pages":"286-296"},"PeriodicalIF":1.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Probabilistic Latent Semantic Analysis Generalization as the Singular Value Decomposition Probabilistic Image\",\"authors\":\"Pau Figuera Vinué, P. G. Bringas\",\"doi\":\"10.2991/jsta.d.200605.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Probabilistic Latent Semantic Analysis has been related with the Singular Value Decomposition. Several problems occur when this comparative is done. Data class restrictions and the existence of several local optima mask the relation, being a formal analogy without any real significance. Moreover, the computational difficulty in terms of time and memory limits the technique applicability. In this work, we use the Nonnegative Matrix Factorization with the Kullback–Leibler divergence to prove, when the number of model components is enough and a limit condition is reached, that the Singular Value Decomposition and the Probabilistic Latent Semantic Analysis empirical distributions are arbitrary close. Under such conditions, the Nonnegative Matrix Factorization and the Probabilistic Latent Semantic Analysis equality is obtained. With this result, the Singular Value Decomposition of every nonnegative entries matrix converges to the general case Probabilistic Latent Semantic Analysis results and constitutes the unique probabilistic image. Moreover, a faster algorithm for the Probabilistic Latent Semantic Analysis is provided.\",\"PeriodicalId\":45080,\"journal\":{\"name\":\"Journal of Statistical Theory and Applications\",\"volume\":\"56 1\",\"pages\":\"286-296\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/jsta.d.200605.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jsta.d.200605.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

概率潜在语义分析与奇异值分解有关。进行比较时会出现几个问题。数据类的限制和几个局部最优的存在掩盖了这种关系,是一种形式上的类比,没有任何实际意义。此外,时间和内存方面的计算难度限制了该技术的适用性。本文利用具有Kullback-Leibler散度的非负矩阵分解证明了当模型分量足够多且达到极限条件时,奇异值分解和概率潜在语义分析的经验分布是任意接近的。在此条件下,得到了非负矩阵分解和概率潜在语义分析等式。利用这一结果,将每个非负项矩阵的奇异值分解收敛到一般情况下的概率潜在语义分析结果,构成唯一的概率图像。此外,还提出了一种更快的概率潜在语义分析算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Probabilistic Latent Semantic Analysis Generalization as the Singular Value Decomposition Probabilistic Image
The Probabilistic Latent Semantic Analysis has been related with the Singular Value Decomposition. Several problems occur when this comparative is done. Data class restrictions and the existence of several local optima mask the relation, being a formal analogy without any real significance. Moreover, the computational difficulty in terms of time and memory limits the technique applicability. In this work, we use the Nonnegative Matrix Factorization with the Kullback–Leibler divergence to prove, when the number of model components is enough and a limit condition is reached, that the Singular Value Decomposition and the Probabilistic Latent Semantic Analysis empirical distributions are arbitrary close. Under such conditions, the Nonnegative Matrix Factorization and the Probabilistic Latent Semantic Analysis equality is obtained. With this result, the Singular Value Decomposition of every nonnegative entries matrix converges to the general case Probabilistic Latent Semantic Analysis results and constitutes the unique probabilistic image. Moreover, a faster algorithm for the Probabilistic Latent Semantic Analysis is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信