多调和函数的bot - chen上同调与Hartogs扩展定理

Xieping Wang
{"title":"多调和函数的bot - chen上同调与Hartogs扩展定理","authors":"Xieping Wang","doi":"10.2422/2036-2145.202205_007","DOIUrl":null,"url":null,"abstract":". Let X be a cohomologically ( n − 1)-complete complex manifold of dimension n ≥ 2. We prove a vanishing result for the Bott-Chern cohomology group of type (1 , 1) with compact support in X , which combined with the well-known technique of Ehrenpreis implies a Hartogs type extension theorem for pluriharmonic functions on X .","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"141 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bott-Chern cohomology and the Hartogs extension theorem for pluriharmonic functions\",\"authors\":\"Xieping Wang\",\"doi\":\"10.2422/2036-2145.202205_007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let X be a cohomologically ( n − 1)-complete complex manifold of dimension n ≥ 2. We prove a vanishing result for the Bott-Chern cohomology group of type (1 , 1) with compact support in X , which combined with the well-known technique of Ehrenpreis implies a Hartogs type extension theorem for pluriharmonic functions on X .\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202205_007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202205_007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

. 设X是一个维数n≥2的上同(n−1)完全复流形。我们证明了X上紧支持(1,1)型的bot - chern上同群的一个消失结果,并结合著名的Ehrenpreis技术,给出了X上多调和函数的Hartogs型可拓定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bott-Chern cohomology and the Hartogs extension theorem for pluriharmonic functions
. Let X be a cohomologically ( n − 1)-complete complex manifold of dimension n ≥ 2. We prove a vanishing result for the Bott-Chern cohomology group of type (1 , 1) with compact support in X , which combined with the well-known technique of Ehrenpreis implies a Hartogs type extension theorem for pluriharmonic functions on X .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信