{"title":"用自旋分辨扫描隧道显微镜研究表面磁性","authors":"Y. Yoshida, M. Haze, Y. Hasegawa","doi":"10.1380/JSSSJ.38.508","DOIUrl":null,"url":null,"abstract":"Spin-polarized scanning tunneling microscopy (SP-STM), which is one of the most developed probe microscopy last decades, provides spin-contrasted surface images in nano- and atomic-scale spatial resolutions. This paper introduces the technique based on our recent results performed on manganese thin films on a W(110) substrate and cobalt nano-islands formed on a Ag(111) substrate. We also provide some tips to establish SP-STM in laboratories.","PeriodicalId":13075,"journal":{"name":"Hyomen Kagaku","volume":"2 1","pages":"508-513"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Magnetism Investigated with Spin-Resolved Scanning Tunneling Microscopy\",\"authors\":\"Y. Yoshida, M. Haze, Y. Hasegawa\",\"doi\":\"10.1380/JSSSJ.38.508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spin-polarized scanning tunneling microscopy (SP-STM), which is one of the most developed probe microscopy last decades, provides spin-contrasted surface images in nano- and atomic-scale spatial resolutions. This paper introduces the technique based on our recent results performed on manganese thin films on a W(110) substrate and cobalt nano-islands formed on a Ag(111) substrate. We also provide some tips to establish SP-STM in laboratories.\",\"PeriodicalId\":13075,\"journal\":{\"name\":\"Hyomen Kagaku\",\"volume\":\"2 1\",\"pages\":\"508-513\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hyomen Kagaku\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1380/JSSSJ.38.508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hyomen Kagaku","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1380/JSSSJ.38.508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface Magnetism Investigated with Spin-Resolved Scanning Tunneling Microscopy
Spin-polarized scanning tunneling microscopy (SP-STM), which is one of the most developed probe microscopy last decades, provides spin-contrasted surface images in nano- and atomic-scale spatial resolutions. This paper introduces the technique based on our recent results performed on manganese thin films on a W(110) substrate and cobalt nano-islands formed on a Ag(111) substrate. We also provide some tips to establish SP-STM in laboratories.