多维数据合成提高分类模型有效性

IF 1.5 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ahmad Al-qerem, A. Ali, Hani Attar, S. Nashwan, Lianyong Qi, Mohammad Kazem Moghimi, A. Solyman
{"title":"多维数据合成提高分类模型有效性","authors":"Ahmad Al-qerem, A. Ali, Hani Attar, S. Nashwan, Lianyong Qi, Mohammad Kazem Moghimi, A. Solyman","doi":"10.1145/3603715","DOIUrl":null,"url":null,"abstract":"This article aims to compare Generative Adversarial Network (GAN) models and feature selection methods for generating synthetic data in order to improve the validity of a classification model. The synthetic data generation technique involves generating new data samples from existing data to increase the diversity of the data and help the model generalize better. The multidimensional aspect of the data refers to the fact that it can have multiple features or variables that describe it. The GAN models have proven to be effective in preserving the statistical properties of the original data. However, the order of data augmentation and feature selection is crucial to build robust and accurate predictive models. By comparing the different GAN models with feature selection methods on multidimensional datasets, this article aims to determine the best combination to support the validity of a classification model in multidimensional data.","PeriodicalId":44355,"journal":{"name":"ACM Journal of Data and Information Quality","volume":"16 1","pages":"1 - 20"},"PeriodicalIF":1.5000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Generation of Multidimensional Data to Improve Classification Model Validity\",\"authors\":\"Ahmad Al-qerem, A. Ali, Hani Attar, S. Nashwan, Lianyong Qi, Mohammad Kazem Moghimi, A. Solyman\",\"doi\":\"10.1145/3603715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to compare Generative Adversarial Network (GAN) models and feature selection methods for generating synthetic data in order to improve the validity of a classification model. The synthetic data generation technique involves generating new data samples from existing data to increase the diversity of the data and help the model generalize better. The multidimensional aspect of the data refers to the fact that it can have multiple features or variables that describe it. The GAN models have proven to be effective in preserving the statistical properties of the original data. However, the order of data augmentation and feature selection is crucial to build robust and accurate predictive models. By comparing the different GAN models with feature selection methods on multidimensional datasets, this article aims to determine the best combination to support the validity of a classification model in multidimensional data.\",\"PeriodicalId\":44355,\"journal\":{\"name\":\"ACM Journal of Data and Information Quality\",\"volume\":\"16 1\",\"pages\":\"1 - 20\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal of Data and Information Quality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3603715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal of Data and Information Quality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在比较生成对抗网络(GAN)模型和生成合成数据的特征选择方法,以提高分类模型的有效性。合成数据生成技术包括从现有数据中生成新的数据样本,以增加数据的多样性,帮助模型更好地泛化。数据的多维方面指的是它可以有多个特征或变量来描述它。GAN模型已被证明在保留原始数据的统计特性方面是有效的。然而,数据增强和特征选择的顺序对于构建鲁棒和准确的预测模型至关重要。通过在多维数据集上比较不同的GAN模型和特征选择方法,本文旨在确定支持多维数据分类模型有效性的最佳组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Generation of Multidimensional Data to Improve Classification Model Validity
This article aims to compare Generative Adversarial Network (GAN) models and feature selection methods for generating synthetic data in order to improve the validity of a classification model. The synthetic data generation technique involves generating new data samples from existing data to increase the diversity of the data and help the model generalize better. The multidimensional aspect of the data refers to the fact that it can have multiple features or variables that describe it. The GAN models have proven to be effective in preserving the statistical properties of the original data. However, the order of data augmentation and feature selection is crucial to build robust and accurate predictive models. By comparing the different GAN models with feature selection methods on multidimensional datasets, this article aims to determine the best combination to support the validity of a classification model in multidimensional data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Journal of Data and Information Quality
ACM Journal of Data and Information Quality COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.10
自引率
4.80%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信