{"title":"具有时变强阻尼的半线性波动方程解的爆破","authors":"A. Fino, M. Hamza","doi":"10.3934/eect.2022006","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The paper investigates a class of a semilinear wave equation with time-dependent damping term (<inline-formula><tex-math id=\"M1\">\\begin{document}$ -\\frac{1}{{(1+t)}^{\\beta}}\\Delta u_t $\\end{document}</tex-math></inline-formula>) and a nonlinearity <inline-formula><tex-math id=\"M2\">\\begin{document}$ |u|^p $\\end{document}</tex-math></inline-formula>. We will show the influence of the parameter <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\beta $\\end{document}</tex-math></inline-formula> in the blow-up results under some hypothesis on the initial data and the exponent <inline-formula><tex-math id=\"M4\">\\begin{document}$ p $\\end{document}</tex-math></inline-formula> by using the test function method. We also study the local existence in time of mild solution in the energy space <inline-formula><tex-math id=\"M5\">\\begin{document}$ H^1(\\mathbb{R}^n)\\times L^2(\\mathbb{R}^n) $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blow-up of solutions to semilinear wave equations with a time-dependent strong damping\",\"authors\":\"A. Fino, M. Hamza\",\"doi\":\"10.3934/eect.2022006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>The paper investigates a class of a semilinear wave equation with time-dependent damping term (<inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ -\\\\frac{1}{{(1+t)}^{\\\\beta}}\\\\Delta u_t $\\\\end{document}</tex-math></inline-formula>) and a nonlinearity <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ |u|^p $\\\\end{document}</tex-math></inline-formula>. We will show the influence of the parameter <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\beta $\\\\end{document}</tex-math></inline-formula> in the blow-up results under some hypothesis on the initial data and the exponent <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ p $\\\\end{document}</tex-math></inline-formula> by using the test function method. We also study the local existence in time of mild solution in the energy space <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ H^1(\\\\mathbb{R}^n)\\\\times L^2(\\\\mathbb{R}^n) $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022006\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
The paper investigates a class of a semilinear wave equation with time-dependent damping term (\begin{document}$ -\frac{1}{{(1+t)}^{\beta}}\Delta u_t $\end{document}) and a nonlinearity \begin{document}$ |u|^p $\end{document}. We will show the influence of the parameter \begin{document}$ \beta $\end{document} in the blow-up results under some hypothesis on the initial data and the exponent \begin{document}$ p $\end{document} by using the test function method. We also study the local existence in time of mild solution in the energy space \begin{document}$ H^1(\mathbb{R}^n)\times L^2(\mathbb{R}^n) $\end{document}.
Blow-up of solutions to semilinear wave equations with a time-dependent strong damping
The paper investigates a class of a semilinear wave equation with time-dependent damping term (\begin{document}$ -\frac{1}{{(1+t)}^{\beta}}\Delta u_t $\end{document}) and a nonlinearity \begin{document}$ |u|^p $\end{document}. We will show the influence of the parameter \begin{document}$ \beta $\end{document} in the blow-up results under some hypothesis on the initial data and the exponent \begin{document}$ p $\end{document} by using the test function method. We also study the local existence in time of mild solution in the energy space \begin{document}$ H^1(\mathbb{R}^n)\times L^2(\mathbb{R}^n) $\end{document}.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.