{"title":"具有时变强阻尼的半线性波动方程解的爆破","authors":"A. Fino, M. Hamza","doi":"10.3934/eect.2022006","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The paper investigates a class of a semilinear wave equation with time-dependent damping term (<inline-formula><tex-math id=\"M1\">\\begin{document}$ -\\frac{1}{{(1+t)}^{\\beta}}\\Delta u_t $\\end{document}</tex-math></inline-formula>) and a nonlinearity <inline-formula><tex-math id=\"M2\">\\begin{document}$ |u|^p $\\end{document}</tex-math></inline-formula>. We will show the influence of the parameter <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\beta $\\end{document}</tex-math></inline-formula> in the blow-up results under some hypothesis on the initial data and the exponent <inline-formula><tex-math id=\"M4\">\\begin{document}$ p $\\end{document}</tex-math></inline-formula> by using the test function method. We also study the local existence in time of mild solution in the energy space <inline-formula><tex-math id=\"M5\">\\begin{document}$ H^1(\\mathbb{R}^n)\\times L^2(\\mathbb{R}^n) $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"57 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blow-up of solutions to semilinear wave equations with a time-dependent strong damping\",\"authors\":\"A. Fino, M. Hamza\",\"doi\":\"10.3934/eect.2022006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>The paper investigates a class of a semilinear wave equation with time-dependent damping term (<inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ -\\\\frac{1}{{(1+t)}^{\\\\beta}}\\\\Delta u_t $\\\\end{document}</tex-math></inline-formula>) and a nonlinearity <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ |u|^p $\\\\end{document}</tex-math></inline-formula>. We will show the influence of the parameter <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\beta $\\\\end{document}</tex-math></inline-formula> in the blow-up results under some hypothesis on the initial data and the exponent <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ p $\\\\end{document}</tex-math></inline-formula> by using the test function method. We also study the local existence in time of mild solution in the energy space <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ H^1(\\\\mathbb{R}^n)\\\\times L^2(\\\\mathbb{R}^n) $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":48833,\"journal\":{\"name\":\"Evolution Equations and Control Theory\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations and Control Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022006\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
The paper investigates a class of a semilinear wave equation with time-dependent damping term (\begin{document}$ -\frac{1}{{(1+t)}^{\beta}}\Delta u_t $\end{document}) and a nonlinearity \begin{document}$ |u|^p $\end{document}. We will show the influence of the parameter \begin{document}$ \beta $\end{document} in the blow-up results under some hypothesis on the initial data and the exponent \begin{document}$ p $\end{document} by using the test function method. We also study the local existence in time of mild solution in the energy space \begin{document}$ H^1(\mathbb{R}^n)\times L^2(\mathbb{R}^n) $\end{document}.
Blow-up of solutions to semilinear wave equations with a time-dependent strong damping
The paper investigates a class of a semilinear wave equation with time-dependent damping term (\begin{document}$ -\frac{1}{{(1+t)}^{\beta}}\Delta u_t $\end{document}) and a nonlinearity \begin{document}$ |u|^p $\end{document}. We will show the influence of the parameter \begin{document}$ \beta $\end{document} in the blow-up results under some hypothesis on the initial data and the exponent \begin{document}$ p $\end{document} by using the test function method. We also study the local existence in time of mild solution in the energy space \begin{document}$ H^1(\mathbb{R}^n)\times L^2(\mathbb{R}^n) $\end{document}.
期刊介绍:
EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include:
* Modeling of physical systems as infinite-dimensional processes
* Direct problems such as existence, regularity and well-posedness
* Stability, long-time behavior and associated dynamical attractors
* Indirect problems such as exact controllability, reachability theory and inverse problems
* Optimization - including shape optimization - optimal control, game theory and calculus of variations
* Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s)
* Applications of the theory to physics, chemistry, engineering, economics, medicine and biology