差分空时调制的非相干序列检测

Cong Ling, K. H. Li, A. Kot
{"title":"差分空时调制的非相干序列检测","authors":"Cong Ling, K. H. Li, A. Kot","doi":"10.1109/TIT.2003.817452","DOIUrl":null,"url":null,"abstract":"Approximate maximum-likelihood noncoherent sequence detection (NSD) for differential space-time modulation (DSTM) in time-selective fading channels is proposed. The starting point is the optimum multiple-symbol differential detection for DSTM that is characterized by exponential complexity. By truncating the memory of the incremental metric, a finite-state trellis is obtained so that a Viterbi algorithm can be implemented to perform sequence detection. Compared to existing linear predictive receivers, a distinguished feature of NSD is that it can accommodate nondiagonal constellations in continuous fading. Error analysis demonstrates that significant improvement in performance is achievable over linear prediction receivers. By incorporating the reduced-state sequence detection techniques, performance and complexity tradeoffs can be controlled by the branch memory and trellis size. Numerical results show that most of the performance gain can be achieved by using an L-state trellis, where L is the size of the DSTM constellation.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"29 1","pages":"2727-2734"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncoherent sequence detection of differential space-time modulatio\",\"authors\":\"Cong Ling, K. H. Li, A. Kot\",\"doi\":\"10.1109/TIT.2003.817452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate maximum-likelihood noncoherent sequence detection (NSD) for differential space-time modulation (DSTM) in time-selective fading channels is proposed. The starting point is the optimum multiple-symbol differential detection for DSTM that is characterized by exponential complexity. By truncating the memory of the incremental metric, a finite-state trellis is obtained so that a Viterbi algorithm can be implemented to perform sequence detection. Compared to existing linear predictive receivers, a distinguished feature of NSD is that it can accommodate nondiagonal constellations in continuous fading. Error analysis demonstrates that significant improvement in performance is achievable over linear prediction receivers. By incorporating the reduced-state sequence detection techniques, performance and complexity tradeoffs can be controlled by the branch memory and trellis size. Numerical results show that most of the performance gain can be achieved by using an L-state trellis, where L is the size of the DSTM constellation.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"29 1\",\"pages\":\"2727-2734\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2003.817452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.817452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了时间选择性衰落信道中差分空时调制(DSTM)的近似最大似然非相干序列检测(NSD)。本文的出发点是指数复杂度的DSTM的最佳多符号差分检测。通过截断增量度量的内存,得到有限状态网格,从而实现Viterbi算法进行序列检测。与现有的线性预测接收机相比,NSD的一个显著特点是它可以适应连续衰落中的非对角星座。误差分析表明,与线性预测接收机相比,性能有显著提高。通过结合减少状态序列检测技术,可以通过分支内存和网格大小来控制性能和复杂性的权衡。数值结果表明,使用L状态网格可以获得大部分性能增益,其中L为DSTM星座的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncoherent sequence detection of differential space-time modulatio
Approximate maximum-likelihood noncoherent sequence detection (NSD) for differential space-time modulation (DSTM) in time-selective fading channels is proposed. The starting point is the optimum multiple-symbol differential detection for DSTM that is characterized by exponential complexity. By truncating the memory of the incremental metric, a finite-state trellis is obtained so that a Viterbi algorithm can be implemented to perform sequence detection. Compared to existing linear predictive receivers, a distinguished feature of NSD is that it can accommodate nondiagonal constellations in continuous fading. Error analysis demonstrates that significant improvement in performance is achievable over linear prediction receivers. By incorporating the reduced-state sequence detection techniques, performance and complexity tradeoffs can be controlled by the branch memory and trellis size. Numerical results show that most of the performance gain can be achieved by using an L-state trellis, where L is the size of the DSTM constellation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信