大规模网络并行化中的图划分

Sima Das, J. Leopold, Susmita K. Ghosh, Sajal K. Das
{"title":"大规模网络并行化中的图划分","authors":"Sima Das, J. Leopold, Susmita K. Ghosh, Sajal K. Das","doi":"10.1109/LCN.2016.36","DOIUrl":null,"url":null,"abstract":"Real world large scale networks exhibit intrinsic community structure, with dense intra-community connectivity and sparse inter-community connectivity. Leveraging their community structure for parallelization of computational tasks and applications, is a significant step towards computational efficiency and application effectiveness. We propose a weighted depth-first-search graph partitioning algorithm for community formation that preserves the needed community dependency without any cycles. To comply with heterogeneity in community structure and size of the real world networks, we use a flexible limiting value for them. Further, our algorithm is a diversion from the existing modularity based algorithms. We evaluate our algorithm as the quality of the generated partitions, measured in terms of number of graph cuts.","PeriodicalId":6864,"journal":{"name":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","volume":"30 1","pages":"176-179"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Partitioning in Parallelization of Large Scale Networks\",\"authors\":\"Sima Das, J. Leopold, Susmita K. Ghosh, Sajal K. Das\",\"doi\":\"10.1109/LCN.2016.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real world large scale networks exhibit intrinsic community structure, with dense intra-community connectivity and sparse inter-community connectivity. Leveraging their community structure for parallelization of computational tasks and applications, is a significant step towards computational efficiency and application effectiveness. We propose a weighted depth-first-search graph partitioning algorithm for community formation that preserves the needed community dependency without any cycles. To comply with heterogeneity in community structure and size of the real world networks, we use a flexible limiting value for them. Further, our algorithm is a diversion from the existing modularity based algorithms. We evaluate our algorithm as the quality of the generated partitions, measured in terms of number of graph cuts.\",\"PeriodicalId\":6864,\"journal\":{\"name\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"volume\":\"30 1\",\"pages\":\"176-179\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2016.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2016.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现实世界的大规模网络表现出内在的社区结构,社区内连接密集,社区间连接稀疏。利用它们的社区结构来并行化计算任务和应用程序,是迈向计算效率和应用程序有效性的重要一步。我们提出了一种加权深度优先搜索图划分算法,该算法保留了所需的社区依赖而不需要任何循环。为了适应现实世界网络在社区结构和规模上的异质性,我们对它们使用了一个灵活的限制值。此外,我们的算法是现有的基于模块化的算法的一种转移。我们用生成的分区的质量来评估我们的算法,用图切割的数量来衡量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Partitioning in Parallelization of Large Scale Networks
Real world large scale networks exhibit intrinsic community structure, with dense intra-community connectivity and sparse inter-community connectivity. Leveraging their community structure for parallelization of computational tasks and applications, is a significant step towards computational efficiency and application effectiveness. We propose a weighted depth-first-search graph partitioning algorithm for community formation that preserves the needed community dependency without any cycles. To comply with heterogeneity in community structure and size of the real world networks, we use a flexible limiting value for them. Further, our algorithm is a diversion from the existing modularity based algorithms. We evaluate our algorithm as the quality of the generated partitions, measured in terms of number of graph cuts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信