{"title":"不完全市场中的最优对冲","authors":"G. Bouzianis, L. Hughston","doi":"10.1080/1350486x.2020.1819831","DOIUrl":null,"url":null,"abstract":"ABSTRACT We consider the problem of optimal hedging in an incomplete market with an established pricing kernel. In such a market, prices are uniquely determined, but perfect hedges are usually not available. We work in the rather general setting of a Lévy-Ito market, where assets are driven jointly by an n-dimensional Brownian motion and an independent Poisson random measure on an n-dimensional state space. Given a position in need of hedging and the instruments available as hedges, we demonstrate the existence of an optimal hedge portfolio, where optimality is defined by use of a least expected squared error criterion over a specified time frame, and where the numeraire with respect to which the hedge is optimized is taken to be the benchmark process associated with the designated pricing kernel.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"11 1","pages":"265 - 287"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Hedging in Incomplete Markets\",\"authors\":\"G. Bouzianis, L. Hughston\",\"doi\":\"10.1080/1350486x.2020.1819831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We consider the problem of optimal hedging in an incomplete market with an established pricing kernel. In such a market, prices are uniquely determined, but perfect hedges are usually not available. We work in the rather general setting of a Lévy-Ito market, where assets are driven jointly by an n-dimensional Brownian motion and an independent Poisson random measure on an n-dimensional state space. Given a position in need of hedging and the instruments available as hedges, we demonstrate the existence of an optimal hedge portfolio, where optimality is defined by use of a least expected squared error criterion over a specified time frame, and where the numeraire with respect to which the hedge is optimized is taken to be the benchmark process associated with the designated pricing kernel.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"11 1\",\"pages\":\"265 - 287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486x.2020.1819831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486x.2020.1819831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
ABSTRACT We consider the problem of optimal hedging in an incomplete market with an established pricing kernel. In such a market, prices are uniquely determined, but perfect hedges are usually not available. We work in the rather general setting of a Lévy-Ito market, where assets are driven jointly by an n-dimensional Brownian motion and an independent Poisson random measure on an n-dimensional state space. Given a position in need of hedging and the instruments available as hedges, we demonstrate the existence of an optimal hedge portfolio, where optimality is defined by use of a least expected squared error criterion over a specified time frame, and where the numeraire with respect to which the hedge is optimized is taken to be the benchmark process associated with the designated pricing kernel.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.