{"title":"SiO2 ar涂层中嵌入铟纳米粒子片的等离子体散射和耦合效应对硅太阳电池性能的增强","authors":"W. Ho, Hsi-Wen Hsu, Hao-Yu Yang, Jheng-Jie Liu, Yu-Tsen Tsai, Wei-chih Chiu","doi":"10.1109/PVSC45281.2020.9300500","DOIUrl":null,"url":null,"abstract":"In this work, performances of silicon solar cells enhancing by plasmonic scattering and coupling of two-dimensional (2-D) indium nanoparticles (In-NPs) sheets (1-3 layers) embedded in SiO2 antireflective coating (ARC) were demonstrated. Raman and absorbance measurements were examined the plasmonic scattering and coupling effects of 2-D In-NPs sheets embedded in SiO2 layer. Optical reflectance and external quantum efficiency were used to characterize the benefit of plasmonic ARC due to with 2-D In-NPs sheets embedded in SiO2. Photovoltaic current density-voltage measurements under AM 1.5G illumination were used to confirm the enhancement of short-circuit current density and conversion efficiency of the silicon solar cells coated with plasmonic ARC which was depended on In-NPs sheets number. Impressive efficiency enhancements of 39.57%, 38.59%, 34.27% for the cells with 3-, 2-, 1-In NPs sheets embedded in SiO2 layer and of 27.13% for the cell with a SiO2 layer without In-NPs sheet were obtained, respectively, compared to the reference cell.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"27 1","pages":"0231-0233"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic Scattering and Coupling Effects of Indium Nanoparticles Sheets Embedded in SiO2 AR-Coating on Performance Enhancement of Silicon Solar Cells\",\"authors\":\"W. Ho, Hsi-Wen Hsu, Hao-Yu Yang, Jheng-Jie Liu, Yu-Tsen Tsai, Wei-chih Chiu\",\"doi\":\"10.1109/PVSC45281.2020.9300500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, performances of silicon solar cells enhancing by plasmonic scattering and coupling of two-dimensional (2-D) indium nanoparticles (In-NPs) sheets (1-3 layers) embedded in SiO2 antireflective coating (ARC) were demonstrated. Raman and absorbance measurements were examined the plasmonic scattering and coupling effects of 2-D In-NPs sheets embedded in SiO2 layer. Optical reflectance and external quantum efficiency were used to characterize the benefit of plasmonic ARC due to with 2-D In-NPs sheets embedded in SiO2. Photovoltaic current density-voltage measurements under AM 1.5G illumination were used to confirm the enhancement of short-circuit current density and conversion efficiency of the silicon solar cells coated with plasmonic ARC which was depended on In-NPs sheets number. Impressive efficiency enhancements of 39.57%, 38.59%, 34.27% for the cells with 3-, 2-, 1-In NPs sheets embedded in SiO2 layer and of 27.13% for the cell with a SiO2 layer without In-NPs sheet were obtained, respectively, compared to the reference cell.\",\"PeriodicalId\":6773,\"journal\":{\"name\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"27 1\",\"pages\":\"0231-0233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC45281.2020.9300500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plasmonic Scattering and Coupling Effects of Indium Nanoparticles Sheets Embedded in SiO2 AR-Coating on Performance Enhancement of Silicon Solar Cells
In this work, performances of silicon solar cells enhancing by plasmonic scattering and coupling of two-dimensional (2-D) indium nanoparticles (In-NPs) sheets (1-3 layers) embedded in SiO2 antireflective coating (ARC) were demonstrated. Raman and absorbance measurements were examined the plasmonic scattering and coupling effects of 2-D In-NPs sheets embedded in SiO2 layer. Optical reflectance and external quantum efficiency were used to characterize the benefit of plasmonic ARC due to with 2-D In-NPs sheets embedded in SiO2. Photovoltaic current density-voltage measurements under AM 1.5G illumination were used to confirm the enhancement of short-circuit current density and conversion efficiency of the silicon solar cells coated with plasmonic ARC which was depended on In-NPs sheets number. Impressive efficiency enhancements of 39.57%, 38.59%, 34.27% for the cells with 3-, 2-, 1-In NPs sheets embedded in SiO2 layer and of 27.13% for the cell with a SiO2 layer without In-NPs sheet were obtained, respectively, compared to the reference cell.