阿齐沙坦卡美多索米脂质微胶囊的制备与评价

Q3 Pharmacology, Toxicology and Pharmaceutics
F. Rahi, M. Ameen, Krar Kadhim Mohammed Jawad
{"title":"阿齐沙坦卡美多索米脂质微胶囊的制备与评价","authors":"F. Rahi, M. Ameen, Krar Kadhim Mohammed Jawad","doi":"10.15587/2519-4852.2022.270306","DOIUrl":null,"url":null,"abstract":"The aim of the work is to consolidate azilsartan-kamedoxomil (AZM) into lipid matrix controlled-release microparticles to enhance its permeability because AZM belongs to Biopharmaceutical classification (BCS) IV which characterized by poor permeability and to protect AZM from light and humidity and execute a prolonged release profile. \nMaterials and methods. A reversed-phase HPLC method was created and validated to estimate the drug. AZM microparticles formulations were invented using melt dispersion technique and waxy materials such as carnuba wax, beeswax, stearic acid in the ratio of waxy-substance: drug ranging from 0.25: 1 to 1:1 and stabilizer namely; tween 80 and Poloxamer 407 in ratio of stabilizer: drug ranging from 0.5:1 to 1:1. Azilsartan formulations were assessed for azilsartan-medoxomil content, loading, entrapment efficiency, the zeta potential,the particle size, the morphology by scanning electronic microscopy (SEM), and in-vitro release profile. \nResults. Zeta potential results for microparticle formulations using beeswax and carnuba range from -21.1 mV to -26.6 mV and -20.6 mV to -26.7 mV, respectively. This difference indicates that the azilsartan microparticles containing stearic acid are better stabilized with zeta potential of 25.3 - 29.7 mV. Furthermore, the release from azilsartan microparticle formulations containing stearic acid exceeded 80 % after 8 h and remained for 24 h while release from beeswax did not exceed 65 % after the same period and less than 60 % in case of carnuba formulations \nConclusions. The formulation (AZSP4) exhibited the highest zeta potential and released exceeding 80 % of AZM over the course of 8 hours and remained over a day. AZSP4 microparticles formulation containing, poloxamer 407, in a 0.8:0.8:1 drug: stearic acid: poloxamer ratio proved the ability of stearic acid microencapsulation employing poloxamer as stabilizer in a certain ratio can prolong the release of AZM","PeriodicalId":21674,"journal":{"name":"ScienceRise: Pharmaceutical Science","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preparation and evaluation of lipid matrix microencapsulation for drug delivery of azilsartan kamedoxomil\",\"authors\":\"F. Rahi, M. Ameen, Krar Kadhim Mohammed Jawad\",\"doi\":\"10.15587/2519-4852.2022.270306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the work is to consolidate azilsartan-kamedoxomil (AZM) into lipid matrix controlled-release microparticles to enhance its permeability because AZM belongs to Biopharmaceutical classification (BCS) IV which characterized by poor permeability and to protect AZM from light and humidity and execute a prolonged release profile. \\nMaterials and methods. A reversed-phase HPLC method was created and validated to estimate the drug. AZM microparticles formulations were invented using melt dispersion technique and waxy materials such as carnuba wax, beeswax, stearic acid in the ratio of waxy-substance: drug ranging from 0.25: 1 to 1:1 and stabilizer namely; tween 80 and Poloxamer 407 in ratio of stabilizer: drug ranging from 0.5:1 to 1:1. Azilsartan formulations were assessed for azilsartan-medoxomil content, loading, entrapment efficiency, the zeta potential,the particle size, the morphology by scanning electronic microscopy (SEM), and in-vitro release profile. \\nResults. Zeta potential results for microparticle formulations using beeswax and carnuba range from -21.1 mV to -26.6 mV and -20.6 mV to -26.7 mV, respectively. This difference indicates that the azilsartan microparticles containing stearic acid are better stabilized with zeta potential of 25.3 - 29.7 mV. Furthermore, the release from azilsartan microparticle formulations containing stearic acid exceeded 80 % after 8 h and remained for 24 h while release from beeswax did not exceed 65 % after the same period and less than 60 % in case of carnuba formulations \\nConclusions. The formulation (AZSP4) exhibited the highest zeta potential and released exceeding 80 % of AZM over the course of 8 hours and remained over a day. AZSP4 microparticles formulation containing, poloxamer 407, in a 0.8:0.8:1 drug: stearic acid: poloxamer ratio proved the ability of stearic acid microencapsulation employing poloxamer as stabilizer in a certain ratio can prolong the release of AZM\",\"PeriodicalId\":21674,\"journal\":{\"name\":\"ScienceRise: Pharmaceutical Science\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ScienceRise: Pharmaceutical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15587/2519-4852.2022.270306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ScienceRise: Pharmaceutical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/2519-4852.2022.270306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

摘要

由于AZM属于生物制药分类(BCS) IV,其渗透性较差,因此本研究的目的是将AZM整合为脂质基质控释微颗粒,以提高其渗透性,并保护AZM免受光和湿度的影响,并执行长时间的释放。材料和方法。建立了反相高效液相色谱法,并进行了验证。采用熔体分散技术,以蜡质材料如古巴蜡、蜂蜡、硬脂酸为原料,蜡质与药物的比例为0.25:1 ~ 1:1,即稳定剂,发明AZM微粒配方;稳定剂与波洛沙姆407的比例为0.5:1 ~ 1:1。对阿兹沙坦制剂的阿兹沙坦-美多索米含量、负载、包封效率、zeta电位、粒径、扫描电镜(SEM)形貌和体外释放谱进行了评价。结果。用蜂蜡和卡努巴制成的微粒子的Zeta电位结果分别在-21.1 mV到-26.6 mV和-20.6 mV到-26.7 mV之间。这一差异表明含有硬脂酸的阿齐沙坦微粒在zeta电位25.3 ~ 29.7 mV范围内具有较好的稳定性。含有硬脂酸的阿齐沙坦颗粒剂在8 h后释放量超过80%,24 h后释放量保持不变,而蜂蜡的释放量不超过65%,而甘蔗渣的释放量小于60%。该配方(AZSP4)具有最高的zeta电位,在8小时内释放超过80%的AZM,并保持超过一天。含有poloxam407的AZSP4微颗粒制剂,以0.8:0.8:1的药物:硬脂酸:poloxamer的比例证明硬脂酸微胶囊以一定比例的poloxamer作为稳定剂可以延长AZM的释放
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and evaluation of lipid matrix microencapsulation for drug delivery of azilsartan kamedoxomil
The aim of the work is to consolidate azilsartan-kamedoxomil (AZM) into lipid matrix controlled-release microparticles to enhance its permeability because AZM belongs to Biopharmaceutical classification (BCS) IV which characterized by poor permeability and to protect AZM from light and humidity and execute a prolonged release profile. Materials and methods. A reversed-phase HPLC method was created and validated to estimate the drug. AZM microparticles formulations were invented using melt dispersion technique and waxy materials such as carnuba wax, beeswax, stearic acid in the ratio of waxy-substance: drug ranging from 0.25: 1 to 1:1 and stabilizer namely; tween 80 and Poloxamer 407 in ratio of stabilizer: drug ranging from 0.5:1 to 1:1. Azilsartan formulations were assessed for azilsartan-medoxomil content, loading, entrapment efficiency, the zeta potential,the particle size, the morphology by scanning electronic microscopy (SEM), and in-vitro release profile. Results. Zeta potential results for microparticle formulations using beeswax and carnuba range from -21.1 mV to -26.6 mV and -20.6 mV to -26.7 mV, respectively. This difference indicates that the azilsartan microparticles containing stearic acid are better stabilized with zeta potential of 25.3 - 29.7 mV. Furthermore, the release from azilsartan microparticle formulations containing stearic acid exceeded 80 % after 8 h and remained for 24 h while release from beeswax did not exceed 65 % after the same period and less than 60 % in case of carnuba formulations Conclusions. The formulation (AZSP4) exhibited the highest zeta potential and released exceeding 80 % of AZM over the course of 8 hours and remained over a day. AZSP4 microparticles formulation containing, poloxamer 407, in a 0.8:0.8:1 drug: stearic acid: poloxamer ratio proved the ability of stearic acid microencapsulation employing poloxamer as stabilizer in a certain ratio can prolong the release of AZM
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ScienceRise: Pharmaceutical Science
ScienceRise: Pharmaceutical Science Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信