{"title":"用参数化时空模型解释光流事件","authors":"Michael J. Black","doi":"10.1109/CVPR.1999.786959","DOIUrl":null,"url":null,"abstract":"A spatio-temporal representation for complex optical flow events is developed that generalizes traditional parameterized motion models (e.g. affine). These generative spatio-temporal models may be non-linear or stochastic and are event-specific in that they characterize a particular type of object motion (e.g. sitting or walking). Within a Bayesian framework we seek the appropriate model, phase, rate, spatial position, and scale to account for the image variation. The posterior distribution over this parameter space conditioned on image measurements is typically non-Gaussian. The distribution is represented using factored sampling and is predicted and updated over time using the condensation algorithm. The resulting framework automatically detects, localizes, and recognizes motion events.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"77 1","pages":"326-332 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Explaining optical flow events with parameterized spatio-temporal models\",\"authors\":\"Michael J. Black\",\"doi\":\"10.1109/CVPR.1999.786959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spatio-temporal representation for complex optical flow events is developed that generalizes traditional parameterized motion models (e.g. affine). These generative spatio-temporal models may be non-linear or stochastic and are event-specific in that they characterize a particular type of object motion (e.g. sitting or walking). Within a Bayesian framework we seek the appropriate model, phase, rate, spatial position, and scale to account for the image variation. The posterior distribution over this parameter space conditioned on image measurements is typically non-Gaussian. The distribution is represented using factored sampling and is predicted and updated over time using the condensation algorithm. The resulting framework automatically detects, localizes, and recognizes motion events.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"77 1\",\"pages\":\"326-332 Vol. 1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.786959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.786959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Explaining optical flow events with parameterized spatio-temporal models
A spatio-temporal representation for complex optical flow events is developed that generalizes traditional parameterized motion models (e.g. affine). These generative spatio-temporal models may be non-linear or stochastic and are event-specific in that they characterize a particular type of object motion (e.g. sitting or walking). Within a Bayesian framework we seek the appropriate model, phase, rate, spatial position, and scale to account for the image variation. The posterior distribution over this parameter space conditioned on image measurements is typically non-Gaussian. The distribution is represented using factored sampling and is predicted and updated over time using the condensation algorithm. The resulting framework automatically detects, localizes, and recognizes motion events.