{"title":"基于磁控的可编程液滴操作平台设计","authors":"Xianmiao Zhang, Jie Liu, Jiying Liu, Yu-zhou Wang, Mian Zhang, Hongbiao Xiang","doi":"10.1109/CYBER55403.2022.9907625","DOIUrl":null,"url":null,"abstract":"Droplet actuation simplifies the handling of various reagents or samples and can be applied to a wide range of fields, including chemistry, biology, biomedical, and others. This paper presents a programmable droplet control system based on a magnetoelastic membrane and electromagnetic pillar array. Different magnetic blocks with different magnetization directions were designed on the silicone rubber membrane, and the magnetoelastic membrane deformed under the magnetic field generated by the array of electromagnetic pillars. By combining the gravitational forces of the droplet and the deformation of the magnetic membranes, the motion of the droplet can be controlled. Furthermore, the surface of membranes was ablated with a laser machine to impart superhydrophobic properties. The simulation results show that with the different magnetic fields, the droplet can move lengthwise, widthwise, and diagonally in the horizontal plane, and multiple droplets can be merged and mixed. In contrast to the traditional droplet control method, the droplet programmable movement control system utilizing superhydrophobic magnetoelastic membranes and an electromagnetic pillar array has better stationarity, flexibility and does not affect the basic properties of the droplets.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"21 1","pages":"1224-1229"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Programmable Droplet Manipulation Platform Based on Magnetic Control\",\"authors\":\"Xianmiao Zhang, Jie Liu, Jiying Liu, Yu-zhou Wang, Mian Zhang, Hongbiao Xiang\",\"doi\":\"10.1109/CYBER55403.2022.9907625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Droplet actuation simplifies the handling of various reagents or samples and can be applied to a wide range of fields, including chemistry, biology, biomedical, and others. This paper presents a programmable droplet control system based on a magnetoelastic membrane and electromagnetic pillar array. Different magnetic blocks with different magnetization directions were designed on the silicone rubber membrane, and the magnetoelastic membrane deformed under the magnetic field generated by the array of electromagnetic pillars. By combining the gravitational forces of the droplet and the deformation of the magnetic membranes, the motion of the droplet can be controlled. Furthermore, the surface of membranes was ablated with a laser machine to impart superhydrophobic properties. The simulation results show that with the different magnetic fields, the droplet can move lengthwise, widthwise, and diagonally in the horizontal plane, and multiple droplets can be merged and mixed. In contrast to the traditional droplet control method, the droplet programmable movement control system utilizing superhydrophobic magnetoelastic membranes and an electromagnetic pillar array has better stationarity, flexibility and does not affect the basic properties of the droplets.\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"21 1\",\"pages\":\"1224-1229\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBER55403.2022.9907625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER55403.2022.9907625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Design of Programmable Droplet Manipulation Platform Based on Magnetic Control
Droplet actuation simplifies the handling of various reagents or samples and can be applied to a wide range of fields, including chemistry, biology, biomedical, and others. This paper presents a programmable droplet control system based on a magnetoelastic membrane and electromagnetic pillar array. Different magnetic blocks with different magnetization directions were designed on the silicone rubber membrane, and the magnetoelastic membrane deformed under the magnetic field generated by the array of electromagnetic pillars. By combining the gravitational forces of the droplet and the deformation of the magnetic membranes, the motion of the droplet can be controlled. Furthermore, the surface of membranes was ablated with a laser machine to impart superhydrophobic properties. The simulation results show that with the different magnetic fields, the droplet can move lengthwise, widthwise, and diagonally in the horizontal plane, and multiple droplets can be merged and mixed. In contrast to the traditional droplet control method, the droplet programmable movement control system utilizing superhydrophobic magnetoelastic membranes and an electromagnetic pillar array has better stationarity, flexibility and does not affect the basic properties of the droplets.