壁面距离场对RANS模型伴随量的贡献

IF 1.1 4区 工程技术 Q4 MECHANICS
Matteo Ugolotti, P. Orkwis, Nathan A. Wukie
{"title":"壁面距离场对RANS模型伴随量的贡献","authors":"Matteo Ugolotti, P. Orkwis, Nathan A. Wukie","doi":"10.1080/10618562.2023.2176487","DOIUrl":null,"url":null,"abstract":"The adjoint method has been extensively used in many areas of CFD such as gradient-based shape optimisation. When utilising the RANS equations for simulating turbulent flows, the adjoint method requires a scrupulous differentiation of the RANS equations, including the wall distance contribution. This can be a challenging task and a potential source of inaccuracy for functional sensitivities if not correctly executed. This paper presents a formulation for including the contribution of an equation-based wall distance model to the discrete adjoint of a RANS model. The proposed formulation is tested in a gradient-based optimisation scenario and the effects of the wall distance adjoint fields on the functional sensitivities are investigated. Neglecting the contribution of the wall distance adjoint yields an error in the functional sensitivities with respect to volume mesh nodes. Including the wall distance adjoint restores the accuracy of the functional sensitivities yielding better convergence of the design optimisation.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"156 1","pages":"687 - 704"},"PeriodicalIF":1.1000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Contribution of Wall Distance Fields to the Adjoint of a RANS Model\",\"authors\":\"Matteo Ugolotti, P. Orkwis, Nathan A. Wukie\",\"doi\":\"10.1080/10618562.2023.2176487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adjoint method has been extensively used in many areas of CFD such as gradient-based shape optimisation. When utilising the RANS equations for simulating turbulent flows, the adjoint method requires a scrupulous differentiation of the RANS equations, including the wall distance contribution. This can be a challenging task and a potential source of inaccuracy for functional sensitivities if not correctly executed. This paper presents a formulation for including the contribution of an equation-based wall distance model to the discrete adjoint of a RANS model. The proposed formulation is tested in a gradient-based optimisation scenario and the effects of the wall distance adjoint fields on the functional sensitivities are investigated. Neglecting the contribution of the wall distance adjoint yields an error in the functional sensitivities with respect to volume mesh nodes. Including the wall distance adjoint restores the accuracy of the functional sensitivities yielding better convergence of the design optimisation.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"156 1\",\"pages\":\"687 - 704\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2023.2176487\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2023.2176487","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

伴随方法已广泛应用于CFD的许多领域,如基于梯度的形状优化。当利用RANS方程模拟湍流时,伴随方法需要对RANS方程进行细致的微分,包括壁面距离的贡献。如果执行不当,这可能是一项具有挑战性的任务,也是功能灵敏度不准确的潜在来源。本文提出了一种将基于方程的壁距模型的贡献包含到RANS模型的离散伴随中的公式。在基于梯度的优化方案中测试了所提出的公式,并研究了壁距伴随场对功能灵敏度的影响。忽略壁面距离伴随的贡献会导致相对于体积网格节点的功能灵敏度出现误差。包括墙距伴随恢复了功能灵敏度的准确性,产生了更好的设计优化的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Contribution of Wall Distance Fields to the Adjoint of a RANS Model
The adjoint method has been extensively used in many areas of CFD such as gradient-based shape optimisation. When utilising the RANS equations for simulating turbulent flows, the adjoint method requires a scrupulous differentiation of the RANS equations, including the wall distance contribution. This can be a challenging task and a potential source of inaccuracy for functional sensitivities if not correctly executed. This paper presents a formulation for including the contribution of an equation-based wall distance model to the discrete adjoint of a RANS model. The proposed formulation is tested in a gradient-based optimisation scenario and the effects of the wall distance adjoint fields on the functional sensitivities are investigated. Neglecting the contribution of the wall distance adjoint yields an error in the functional sensitivities with respect to volume mesh nodes. Including the wall distance adjoint restores the accuracy of the functional sensitivities yielding better convergence of the design optimisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.70%
发文量
25
审稿时长
3 months
期刊介绍: The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields. The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信