从高斯AR过程生成具有期望自相关的拉普拉斯过程

T. Ghirmai
{"title":"从高斯AR过程生成具有期望自相关的拉普拉斯过程","authors":"T. Ghirmai","doi":"10.1109/DSP-SPE.2015.7369537","DOIUrl":null,"url":null,"abstract":"In this paper, we show a convenient way of generating a Laplace process of a desired autocorrelation. Our approach is based upon the fact that the real or imaginary component of the product of two independent complex Gaussian random variables has a Laplace marginal probability density function (pdf). We, therefore, generate a Laplace process by multiplying two independent complex Gaussian autoregressive (AR) processes. By establishing the relationship of the autocorrelation of the complex Gaussian AR processes with the autocorrelation of the resulting Laplace process, we show a convenient and simple method of selecting the parameters of the Gaussian AR processes to obtain desired autocorrelation values of the Laplace Process. To verify the method, we provide computer simulations of generating Laplace processes by the method using illustrative examples and compare their statistical characteristics to theoretical values.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"39 1","pages":"113-117"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generating Laplace process with desired autocorrelation from Gaussian AR processes\",\"authors\":\"T. Ghirmai\",\"doi\":\"10.1109/DSP-SPE.2015.7369537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show a convenient way of generating a Laplace process of a desired autocorrelation. Our approach is based upon the fact that the real or imaginary component of the product of two independent complex Gaussian random variables has a Laplace marginal probability density function (pdf). We, therefore, generate a Laplace process by multiplying two independent complex Gaussian autoregressive (AR) processes. By establishing the relationship of the autocorrelation of the complex Gaussian AR processes with the autocorrelation of the resulting Laplace process, we show a convenient and simple method of selecting the parameters of the Gaussian AR processes to obtain desired autocorrelation values of the Laplace Process. To verify the method, we provide computer simulations of generating Laplace processes by the method using illustrative examples and compare their statistical characteristics to theoretical values.\",\"PeriodicalId\":91992,\"journal\":{\"name\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"volume\":\"39 1\",\"pages\":\"113-117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSP-SPE.2015.7369537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了一种生成期望自相关的拉普拉斯过程的简便方法。我们的方法是基于这样一个事实,即两个独立的复高斯随机变量的乘积的实分量或虚分量具有拉普拉斯边际概率密度函数(pdf)。因此,我们通过将两个独立的复高斯自回归(AR)过程相乘来生成一个拉普拉斯过程。通过建立复高斯AR过程的自相关与得到的拉普拉斯过程的自相关之间的关系,给出了一种方便、简单的方法来选择高斯AR过程的参数以获得期望的拉普拉斯过程的自相关值。为了验证该方法,我们使用说明性示例提供了用该方法生成拉普拉斯过程的计算机模拟,并将其统计特性与理论值进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Laplace process with desired autocorrelation from Gaussian AR processes
In this paper, we show a convenient way of generating a Laplace process of a desired autocorrelation. Our approach is based upon the fact that the real or imaginary component of the product of two independent complex Gaussian random variables has a Laplace marginal probability density function (pdf). We, therefore, generate a Laplace process by multiplying two independent complex Gaussian autoregressive (AR) processes. By establishing the relationship of the autocorrelation of the complex Gaussian AR processes with the autocorrelation of the resulting Laplace process, we show a convenient and simple method of selecting the parameters of the Gaussian AR processes to obtain desired autocorrelation values of the Laplace Process. To verify the method, we provide computer simulations of generating Laplace processes by the method using illustrative examples and compare their statistical characteristics to theoretical values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信