关于正规子群

M. Dixon, L. A. Kurdachenko, I. Subbotin
{"title":"关于正规子群","authors":"M. Dixon, L. A. Kurdachenko, I. Subbotin","doi":"10.1142/s0218196722500163","DOIUrl":null,"url":null,"abstract":"We introduce the concept of a conormal subgroup: a subgroup is conormal if it is contranormal in its normal closure. This unifies the concepts of normal and contranormal subgroups. We obtain some important properties of conormal subgroups, describe their connections with transitivity of normality, and study groups in which all conormal subgroups are normal.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"42 1","pages":"327-345"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On conormal subgroups\",\"authors\":\"M. Dixon, L. A. Kurdachenko, I. Subbotin\",\"doi\":\"10.1142/s0218196722500163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the concept of a conormal subgroup: a subgroup is conormal if it is contranormal in its normal closure. This unifies the concepts of normal and contranormal subgroups. We obtain some important properties of conormal subgroups, describe their connections with transitivity of normality, and study groups in which all conormal subgroups are normal.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"42 1\",\"pages\":\"327-345\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了正规子群的概念:如果子群的正规闭包是正规的,那么子群就是正规的。这统一了正规子群和异正规子群的概念。我们得到了正规子群的一些重要性质,描述了它们与正规可传递性的联系,以及所有正规子群都是正规的学习群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On conormal subgroups
We introduce the concept of a conormal subgroup: a subgroup is conormal if it is contranormal in its normal closure. This unifies the concepts of normal and contranormal subgroups. We obtain some important properties of conormal subgroups, describe their connections with transitivity of normality, and study groups in which all conormal subgroups are normal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信