Quan Kong, Ziming Wu, Ziwei Deng, Martin Klinkigt, Bin Tong, Tomokazu Murakami
{"title":"mmmact:跨模态人类行为理解的大规模数据集","authors":"Quan Kong, Ziming Wu, Ziwei Deng, Martin Klinkigt, Bin Tong, Tomokazu Murakami","doi":"10.1109/ICCV.2019.00875","DOIUrl":null,"url":null,"abstract":"Unlike vision modalities, body-worn sensors or passive sensing can avoid the failure of action understanding in vision related challenges, e.g. occlusion and appearance variation. However, a standard large-scale dataset does not exist, in which different types of modalities across vision and sensors are integrated. To address the disadvantage of vision-based modalities and push towards multi/cross modal action understanding, this paper introduces a new large-scale dataset recorded from 20 distinct subjects with seven different types of modalities: RGB videos, keypoints, acceleration, gyroscope, orientation, Wi-Fi and pressure signal. The dataset consists of more than 36k video clips for 37 action classes covering a wide range of daily life activities such as desktop-related and check-in-based ones in four different distinct scenarios. On the basis of our dataset, we propose a novel multi modality distillation model with attention mechanism to realize an adaptive knowledge transfer from sensor-based modalities to vision-based modalities. The proposed model significantly improves performance of action recognition compared to models trained with only RGB information. The experimental results confirm the effectiveness of our model on cross-subject, -view, -scene and -session evaluation criteria. We believe that this new large-scale multimodal dataset will contribute the community of multimodal based action understanding.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"209 1","pages":"8657-8666"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"MMAct: A Large-Scale Dataset for Cross Modal Human Action Understanding\",\"authors\":\"Quan Kong, Ziming Wu, Ziwei Deng, Martin Klinkigt, Bin Tong, Tomokazu Murakami\",\"doi\":\"10.1109/ICCV.2019.00875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike vision modalities, body-worn sensors or passive sensing can avoid the failure of action understanding in vision related challenges, e.g. occlusion and appearance variation. However, a standard large-scale dataset does not exist, in which different types of modalities across vision and sensors are integrated. To address the disadvantage of vision-based modalities and push towards multi/cross modal action understanding, this paper introduces a new large-scale dataset recorded from 20 distinct subjects with seven different types of modalities: RGB videos, keypoints, acceleration, gyroscope, orientation, Wi-Fi and pressure signal. The dataset consists of more than 36k video clips for 37 action classes covering a wide range of daily life activities such as desktop-related and check-in-based ones in four different distinct scenarios. On the basis of our dataset, we propose a novel multi modality distillation model with attention mechanism to realize an adaptive knowledge transfer from sensor-based modalities to vision-based modalities. The proposed model significantly improves performance of action recognition compared to models trained with only RGB information. The experimental results confirm the effectiveness of our model on cross-subject, -view, -scene and -session evaluation criteria. We believe that this new large-scale multimodal dataset will contribute the community of multimodal based action understanding.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"209 1\",\"pages\":\"8657-8666\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MMAct: A Large-Scale Dataset for Cross Modal Human Action Understanding
Unlike vision modalities, body-worn sensors or passive sensing can avoid the failure of action understanding in vision related challenges, e.g. occlusion and appearance variation. However, a standard large-scale dataset does not exist, in which different types of modalities across vision and sensors are integrated. To address the disadvantage of vision-based modalities and push towards multi/cross modal action understanding, this paper introduces a new large-scale dataset recorded from 20 distinct subjects with seven different types of modalities: RGB videos, keypoints, acceleration, gyroscope, orientation, Wi-Fi and pressure signal. The dataset consists of more than 36k video clips for 37 action classes covering a wide range of daily life activities such as desktop-related and check-in-based ones in four different distinct scenarios. On the basis of our dataset, we propose a novel multi modality distillation model with attention mechanism to realize an adaptive knowledge transfer from sensor-based modalities to vision-based modalities. The proposed model significantly improves performance of action recognition compared to models trained with only RGB information. The experimental results confirm the effectiveness of our model on cross-subject, -view, -scene and -session evaluation criteria. We believe that this new large-scale multimodal dataset will contribute the community of multimodal based action understanding.