T. Kumpuniemi, M. Hämäläinen, K. Y. Yazdandoost, J. Iinatti
{"title":"动态体上超宽带无线电信道建模","authors":"T. Kumpuniemi, M. Hämäläinen, K. Y. Yazdandoost, J. Iinatti","doi":"10.1109/ISMICT.2015.7107512","DOIUrl":null,"url":null,"abstract":"This article presents dynamic on-body radio channel modelling for ultra wideband (UWB) wireless body area network communication. The work is based on frequency domain measurements with a vector network analyzer in an anechoic chamber at a 2-8 GHz frequency band. Two planar UWB antennas were used (dipole and double loop) and they were attached in total eight on-body locations. First, the mean values, standard deviations, maximum and minimum values of the path losses variations were examined at ten discrete frequencies and two links. Secondly, all available channels were observed at three selected frequencies. Dynamic channel models were derived for them by categorizing the links in three classes: high, medium or low dynamics channels. A distribution fitting was applied to all. Based on the second order Akaike information criterion, the best model was noted to be the inverse Gaussian distribution.","PeriodicalId":6624,"journal":{"name":"2015 9th International Symposium on Medical Information and Communication Technology (ISMICT)","volume":"70 1","pages":"126-130"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dynamic on-body UWB radio channel modeling\",\"authors\":\"T. Kumpuniemi, M. Hämäläinen, K. Y. Yazdandoost, J. Iinatti\",\"doi\":\"10.1109/ISMICT.2015.7107512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents dynamic on-body radio channel modelling for ultra wideband (UWB) wireless body area network communication. The work is based on frequency domain measurements with a vector network analyzer in an anechoic chamber at a 2-8 GHz frequency band. Two planar UWB antennas were used (dipole and double loop) and they were attached in total eight on-body locations. First, the mean values, standard deviations, maximum and minimum values of the path losses variations were examined at ten discrete frequencies and two links. Secondly, all available channels were observed at three selected frequencies. Dynamic channel models were derived for them by categorizing the links in three classes: high, medium or low dynamics channels. A distribution fitting was applied to all. Based on the second order Akaike information criterion, the best model was noted to be the inverse Gaussian distribution.\",\"PeriodicalId\":6624,\"journal\":{\"name\":\"2015 9th International Symposium on Medical Information and Communication Technology (ISMICT)\",\"volume\":\"70 1\",\"pages\":\"126-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 9th International Symposium on Medical Information and Communication Technology (ISMICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMICT.2015.7107512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th International Symposium on Medical Information and Communication Technology (ISMICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMICT.2015.7107512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This article presents dynamic on-body radio channel modelling for ultra wideband (UWB) wireless body area network communication. The work is based on frequency domain measurements with a vector network analyzer in an anechoic chamber at a 2-8 GHz frequency band. Two planar UWB antennas were used (dipole and double loop) and they were attached in total eight on-body locations. First, the mean values, standard deviations, maximum and minimum values of the path losses variations were examined at ten discrete frequencies and two links. Secondly, all available channels were observed at three selected frequencies. Dynamic channel models were derived for them by categorizing the links in three classes: high, medium or low dynamics channels. A distribution fitting was applied to all. Based on the second order Akaike information criterion, the best model was noted to be the inverse Gaussian distribution.