数学物理边值问题的双场拉格朗日乘子弱解

IF 1.6 3区 数学 Q1 MATHEMATICS
Mariana Chivu Cojocaru, A. Matei
{"title":"数学物理边值问题的双场拉格朗日乘子弱解","authors":"Mariana Chivu Cojocaru, A. Matei","doi":"10.3846/mma.2022.15827","DOIUrl":null,"url":null,"abstract":"A new variational approach for a boundary value problem in mathematical physics is proposed. By considering two-field Lagrange multipliers, we deliver a variational formulation consisting of a mixed variational problem which is equivalent with a saddle point problem. Thus, the unique solvability of the weak formulation we propose is governed by the saddle point theory. Alternative variational formulations and some of their connections are also discussed.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"126 1","pages":"561-572"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weak solutions via two-field Lagrange Multipliers for boundary Value Problems in Mathematical Physics\",\"authors\":\"Mariana Chivu Cojocaru, A. Matei\",\"doi\":\"10.3846/mma.2022.15827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new variational approach for a boundary value problem in mathematical physics is proposed. By considering two-field Lagrange multipliers, we deliver a variational formulation consisting of a mixed variational problem which is equivalent with a saddle point problem. Thus, the unique solvability of the weak formulation we propose is governed by the saddle point theory. Alternative variational formulations and some of their connections are also discussed.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"126 1\",\"pages\":\"561-572\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2022.15827\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2022.15827","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

提出了求解数学物理边值问题的一种新的变分方法。通过考虑双场拉格朗日乘子,我们给出了一个由混合变分问题组成的变分公式,该变分问题等价于鞍点问题。因此,我们提出的弱公式的唯一可解性是由鞍点理论控制的。本文还讨论了几种不同的变分公式及其联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak solutions via two-field Lagrange Multipliers for boundary Value Problems in Mathematical Physics
A new variational approach for a boundary value problem in mathematical physics is proposed. By considering two-field Lagrange multipliers, we deliver a variational formulation consisting of a mixed variational problem which is equivalent with a saddle point problem. Thus, the unique solvability of the weak formulation we propose is governed by the saddle point theory. Alternative variational formulations and some of their connections are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信