Nguyen Viet Long, Cao Minh Thi, M. Nogami, M. Ohtaki
{"title":"具有新型合金和核壳纳米结构的铂和钯基催化剂在未来燃料电池中的实际应用:专利和重点","authors":"Nguyen Viet Long, Cao Minh Thi, M. Nogami, M. Ohtaki","doi":"10.2174/1874464811205030175","DOIUrl":null,"url":null,"abstract":"Metallic Glasses (MGs), also called glassy metals (amorphous metals, liquid metals) are considered to be the materials of the future. Metallic glasses, formed at very low critical cooling rates, are different from traditional amorphous alloys (which are usually formed at high cooling rates) in order to avoid crystallization. The most important feature of MGs, which distinguishes them from ordinary amorphous materials, is the glass transition that transforms super cooled liquids into a glassy state when cooled from high to low temperature. Some scientists have been investigating the mechanisms and dynamics of metallic glass formation, their atomic structure, micromechanisms of mechanical properties, etc. They have also been exploring the atomic-scale mechanisms of MG formation and the development of new bulk glassy alloys and composites with improved glass-forming ability. Other scientists focus on manufacturing and industrialization of MGs. At the Chinese Academy of Sciences (CAS), there are currently more than 30 groups working on the science, preparation and applications of MGs. The Amorphous Materials and Physics Group at CAS has developed a series of rare earth-based RE-MGs with functional physical properties. In the US, there are science groups that have made successful progress in the area of metallic glasses. More specifically, the US-based team from Yale and the science group from Caltech are more focused on practical aspects relating to MGs (production, industrialization, biomedical materials and aerospace materials). This patent review article briefly investigates the industrialization and some environmental aspects of MGs, as follows: biocompatibility of most MGs, obtaining valuable MGs from low-purity industrial raw materials, use of MGs in green energy applications (solar cells, hydrogen production), use of MGs in catalyst systems and possibilities for using metallic glasses in systems for retention and purification of dangerous pollutants.","PeriodicalId":20875,"journal":{"name":"Recent Patents on Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Pt and Pd based catalysts with novel alloy and core-shell nanostructures for practical applications in next fuel cells: Patents and highlights\",\"authors\":\"Nguyen Viet Long, Cao Minh Thi, M. Nogami, M. Ohtaki\",\"doi\":\"10.2174/1874464811205030175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallic Glasses (MGs), also called glassy metals (amorphous metals, liquid metals) are considered to be the materials of the future. Metallic glasses, formed at very low critical cooling rates, are different from traditional amorphous alloys (which are usually formed at high cooling rates) in order to avoid crystallization. The most important feature of MGs, which distinguishes them from ordinary amorphous materials, is the glass transition that transforms super cooled liquids into a glassy state when cooled from high to low temperature. Some scientists have been investigating the mechanisms and dynamics of metallic glass formation, their atomic structure, micromechanisms of mechanical properties, etc. They have also been exploring the atomic-scale mechanisms of MG formation and the development of new bulk glassy alloys and composites with improved glass-forming ability. Other scientists focus on manufacturing and industrialization of MGs. At the Chinese Academy of Sciences (CAS), there are currently more than 30 groups working on the science, preparation and applications of MGs. The Amorphous Materials and Physics Group at CAS has developed a series of rare earth-based RE-MGs with functional physical properties. In the US, there are science groups that have made successful progress in the area of metallic glasses. More specifically, the US-based team from Yale and the science group from Caltech are more focused on practical aspects relating to MGs (production, industrialization, biomedical materials and aerospace materials). This patent review article briefly investigates the industrialization and some environmental aspects of MGs, as follows: biocompatibility of most MGs, obtaining valuable MGs from low-purity industrial raw materials, use of MGs in green energy applications (solar cells, hydrogen production), use of MGs in catalyst systems and possibilities for using metallic glasses in systems for retention and purification of dangerous pollutants.\",\"PeriodicalId\":20875,\"journal\":{\"name\":\"Recent Patents on Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874464811205030175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874464811205030175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pt and Pd based catalysts with novel alloy and core-shell nanostructures for practical applications in next fuel cells: Patents and highlights
Metallic Glasses (MGs), also called glassy metals (amorphous metals, liquid metals) are considered to be the materials of the future. Metallic glasses, formed at very low critical cooling rates, are different from traditional amorphous alloys (which are usually formed at high cooling rates) in order to avoid crystallization. The most important feature of MGs, which distinguishes them from ordinary amorphous materials, is the glass transition that transforms super cooled liquids into a glassy state when cooled from high to low temperature. Some scientists have been investigating the mechanisms and dynamics of metallic glass formation, their atomic structure, micromechanisms of mechanical properties, etc. They have also been exploring the atomic-scale mechanisms of MG formation and the development of new bulk glassy alloys and composites with improved glass-forming ability. Other scientists focus on manufacturing and industrialization of MGs. At the Chinese Academy of Sciences (CAS), there are currently more than 30 groups working on the science, preparation and applications of MGs. The Amorphous Materials and Physics Group at CAS has developed a series of rare earth-based RE-MGs with functional physical properties. In the US, there are science groups that have made successful progress in the area of metallic glasses. More specifically, the US-based team from Yale and the science group from Caltech are more focused on practical aspects relating to MGs (production, industrialization, biomedical materials and aerospace materials). This patent review article briefly investigates the industrialization and some environmental aspects of MGs, as follows: biocompatibility of most MGs, obtaining valuable MGs from low-purity industrial raw materials, use of MGs in green energy applications (solar cells, hydrogen production), use of MGs in catalyst systems and possibilities for using metallic glasses in systems for retention and purification of dangerous pollutants.