{"title":"中等精度范围内初等函数的高效实现","authors":"Fredrik Johansson","doi":"10.1109/ARITH.2015.16","DOIUrl":null,"url":null,"abstract":"We describe a new implementation of the elementary transcendental functions exp, sin, cos, log and atan for variable precision up to approximately 4096 bits. Compared to the MPFR library, we achieve a maximum speedup ranging from a factor 3 for cos to 30 for atan. Our implementation uses table-based argument reduction together with rectangular splitting to evaluate Taylor series. We collect denominators to reduce the number of divisions in the Taylor series, and avoid overhead by doing all multiprecision arithmetic using the mpn layer of the GMP library. Our implementation provides rigorous error bounds.","PeriodicalId":6526,"journal":{"name":"2015 IEEE 22nd Symposium on Computer Arithmetic","volume":"28 1","pages":"83-89"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Efficient Implementation of Elementary Functions in the Medium-Precision Range\",\"authors\":\"Fredrik Johansson\",\"doi\":\"10.1109/ARITH.2015.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a new implementation of the elementary transcendental functions exp, sin, cos, log and atan for variable precision up to approximately 4096 bits. Compared to the MPFR library, we achieve a maximum speedup ranging from a factor 3 for cos to 30 for atan. Our implementation uses table-based argument reduction together with rectangular splitting to evaluate Taylor series. We collect denominators to reduce the number of divisions in the Taylor series, and avoid overhead by doing all multiprecision arithmetic using the mpn layer of the GMP library. Our implementation provides rigorous error bounds.\",\"PeriodicalId\":6526,\"journal\":{\"name\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"volume\":\"28 1\",\"pages\":\"83-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2015.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2015.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
摘要
我们描述了一个新的实现初等超越函数exp, sin, cos, log和atan的可变精度高达约4096位。与MPFR库相比,我们实现了从cos的3倍到atan的30倍的最大加速。我们的实现使用基于表的参数约简和矩形分裂来计算泰勒级数。我们收集分母以减少泰勒级数中的除法次数,并通过使用GMP库的mpn层进行所有多精度算术来避免开销。我们的实现提供了严格的错误界限。
Efficient Implementation of Elementary Functions in the Medium-Precision Range
We describe a new implementation of the elementary transcendental functions exp, sin, cos, log and atan for variable precision up to approximately 4096 bits. Compared to the MPFR library, we achieve a maximum speedup ranging from a factor 3 for cos to 30 for atan. Our implementation uses table-based argument reduction together with rectangular splitting to evaluate Taylor series. We collect denominators to reduce the number of divisions in the Taylor series, and avoid overhead by doing all multiprecision arithmetic using the mpn layer of the GMP library. Our implementation provides rigorous error bounds.