N. M. Obaid, Hakim S. Sultan, A. Abed, M. Jweeg, O. Abdullah
{"title":"太阳辐射入射角与光伏系统积尘的新关系","authors":"N. M. Obaid, Hakim S. Sultan, A. Abed, M. Jweeg, O. Abdullah","doi":"10.5755/j01.erem.79.1.31178","DOIUrl":null,"url":null,"abstract":"It can be considered that electric generating power from solar energy is an essential topic in the energy field. Several environmental factors affect the energy production of solar cells. Dust accumulation is one of the main factors which significantly negatively influences output energy. However, this topic is not investigated extensively, despite its significant impact, especially in arid areas such as Iraq. In this research paper, both theoretical and experimental techniques were applied to investigate the effect of accumulated dust particles on the efficiency of photovoltaic PV systems. An on-grid photovoltaic system was selected to achieve the experimental work. The results proved the negative effect of dust particles on the performance of the solar cell. Based on the obtained results, a new relationship was introduced between efficiency degradation and the amount of dust that accumulated on the surfaces of cells. This correlation is considered a necessity to find the characteristics of PV solar systems to improve their performance and efficiency. The new correlation introduced in this paper can be considered a promising prediction tool to estimate the characteristics of photovoltaic solar cells under different actual environment working conditions. The output power of the cleaned array system increased by 5–26% compared with the untreated system over the test period. Furthermore, the performance ratio (PR) was enhanced within the cleaned array system by 3 to 6 compared with the uncleaned array. A significant formula introduced the connection between the actual output power of the PV systems and the environmental condition (dust accumulation), where it can be considered as feedback to keep the performance in a steady status, which means obtaining the highest output power.","PeriodicalId":11703,"journal":{"name":"Environmental Research, Engineering and Management","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Correlation for Solar Radiation Incidence Angle and Dust Accumulation of Photovoltaic PV Systems\",\"authors\":\"N. M. Obaid, Hakim S. Sultan, A. Abed, M. Jweeg, O. Abdullah\",\"doi\":\"10.5755/j01.erem.79.1.31178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It can be considered that electric generating power from solar energy is an essential topic in the energy field. Several environmental factors affect the energy production of solar cells. Dust accumulation is one of the main factors which significantly negatively influences output energy. However, this topic is not investigated extensively, despite its significant impact, especially in arid areas such as Iraq. In this research paper, both theoretical and experimental techniques were applied to investigate the effect of accumulated dust particles on the efficiency of photovoltaic PV systems. An on-grid photovoltaic system was selected to achieve the experimental work. The results proved the negative effect of dust particles on the performance of the solar cell. Based on the obtained results, a new relationship was introduced between efficiency degradation and the amount of dust that accumulated on the surfaces of cells. This correlation is considered a necessity to find the characteristics of PV solar systems to improve their performance and efficiency. The new correlation introduced in this paper can be considered a promising prediction tool to estimate the characteristics of photovoltaic solar cells under different actual environment working conditions. The output power of the cleaned array system increased by 5–26% compared with the untreated system over the test period. Furthermore, the performance ratio (PR) was enhanced within the cleaned array system by 3 to 6 compared with the uncleaned array. A significant formula introduced the connection between the actual output power of the PV systems and the environmental condition (dust accumulation), where it can be considered as feedback to keep the performance in a steady status, which means obtaining the highest output power.\",\"PeriodicalId\":11703,\"journal\":{\"name\":\"Environmental Research, Engineering and Management\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research, Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.erem.79.1.31178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research, Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j01.erem.79.1.31178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
A New Correlation for Solar Radiation Incidence Angle and Dust Accumulation of Photovoltaic PV Systems
It can be considered that electric generating power from solar energy is an essential topic in the energy field. Several environmental factors affect the energy production of solar cells. Dust accumulation is one of the main factors which significantly negatively influences output energy. However, this topic is not investigated extensively, despite its significant impact, especially in arid areas such as Iraq. In this research paper, both theoretical and experimental techniques were applied to investigate the effect of accumulated dust particles on the efficiency of photovoltaic PV systems. An on-grid photovoltaic system was selected to achieve the experimental work. The results proved the negative effect of dust particles on the performance of the solar cell. Based on the obtained results, a new relationship was introduced between efficiency degradation and the amount of dust that accumulated on the surfaces of cells. This correlation is considered a necessity to find the characteristics of PV solar systems to improve their performance and efficiency. The new correlation introduced in this paper can be considered a promising prediction tool to estimate the characteristics of photovoltaic solar cells under different actual environment working conditions. The output power of the cleaned array system increased by 5–26% compared with the untreated system over the test period. Furthermore, the performance ratio (PR) was enhanced within the cleaned array system by 3 to 6 compared with the uncleaned array. A significant formula introduced the connection between the actual output power of the PV systems and the environmental condition (dust accumulation), where it can be considered as feedback to keep the performance in a steady status, which means obtaining the highest output power.
期刊介绍:
First published in 1995, the journal Environmental Research, Engineering and Management (EREM) is an international multidisciplinary journal designed to serve as a roadmap for understanding complex issues and debates of sustainable development. EREM publishes peer-reviewed scientific papers which cover research in the fields of environmental science, engineering (pollution prevention, resource efficiency), management, energy (renewables), agricultural and biological sciences, and social sciences. EREM’s topics of interest include, but are not limited to, the following: environmental research, ecological monitoring, and climate change; environmental pollution – impact assessment, mitigation, and prevention; environmental engineering, sustainable production, and eco innovations; environmental management, strategy, standards, social responsibility; environmental economics, policy, and law; sustainable consumption and education.