{"title":"串行/并行网络可靠性的寿命分布及其逼近","authors":"Alexei Leahu, Veronica Andrievschi-Bagrin","doi":"10.2478/auom-2020-0025","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we present limit theorems for lifetime distributions connected with network’s reliability as distributions of random variables(r.v.) min(Y1, Y2,..., YM) and max(Y1, Y2,..., YM ), where Y1, Y2,..., are independent, identically distributed random variables (i.i.d.r.v.), M being Power Series Distributed (PSD) r.v. independent of them and, at the same time, Yk, k = 1, 2, ..., being a sum of non-negative, i.i.d.r.v. in a Pascal distributed random number.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifetime Distributions and their Approximation in Reliability of Serial/Parallel Networks\",\"authors\":\"Alexei Leahu, Veronica Andrievschi-Bagrin\",\"doi\":\"10.2478/auom-2020-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we present limit theorems for lifetime distributions connected with network’s reliability as distributions of random variables(r.v.) min(Y1, Y2,..., YM) and max(Y1, Y2,..., YM ), where Y1, Y2,..., are independent, identically distributed random variables (i.i.d.r.v.), M being Power Series Distributed (PSD) r.v. independent of them and, at the same time, Yk, k = 1, 2, ..., being a sum of non-negative, i.i.d.r.v. in a Pascal distributed random number.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文给出了与网络可靠性相关的寿命分布的极限定理,即随机变量min(Y1, Y2,…)的分布。, YM)和max(Y1, Y2,…), YM),其中Y1, Y2,…,为独立的同分布随机变量(i.i.d.r.v.), M为与它们无关的幂级数分布(PSD),同时,Yk, k = 1,2,…,是帕斯卡分布随机数中非负的i.i.d.r.v.的和。
Lifetime Distributions and their Approximation in Reliability of Serial/Parallel Networks
Abstract In this paper we present limit theorems for lifetime distributions connected with network’s reliability as distributions of random variables(r.v.) min(Y1, Y2,..., YM) and max(Y1, Y2,..., YM ), where Y1, Y2,..., are independent, identically distributed random variables (i.i.d.r.v.), M being Power Series Distributed (PSD) r.v. independent of them and, at the same time, Yk, k = 1, 2, ..., being a sum of non-negative, i.i.d.r.v. in a Pascal distributed random number.