ARMA相关源分离的近似联合对角化

Saliha Meziani, A. Belouchrani, K. Abed-Meraim
{"title":"ARMA相关源分离的近似联合对角化","authors":"Saliha Meziani, A. Belouchrani, K. Abed-Meraim","doi":"10.1109/SAM48682.2020.9104225","DOIUrl":null,"url":null,"abstract":"In this paper, an Approximate Joint Diagonalization (AJD) approach is proposed to separate dependent source signals. The diagonal structure of the Auto Regressive Moving Average (ARMA) matrix coefficients moves the problem from Blind Source Separation (BSS) to AJD one. The identified matrix coefficients of the observed signal are jointly diagonalized to achieve the mixture matrix identification. Simulation results are provided to illustrate the effectiveness of the proposed approach.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Approximate Joint Diagonalization for ARMA Dependent Source Separation\",\"authors\":\"Saliha Meziani, A. Belouchrani, K. Abed-Meraim\",\"doi\":\"10.1109/SAM48682.2020.9104225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an Approximate Joint Diagonalization (AJD) approach is proposed to separate dependent source signals. The diagonal structure of the Auto Regressive Moving Average (ARMA) matrix coefficients moves the problem from Blind Source Separation (BSS) to AJD one. The identified matrix coefficients of the observed signal are jointly diagonalized to achieve the mixture matrix identification. Simulation results are provided to illustrate the effectiveness of the proposed approach.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种近似联合对角化(AJD)方法来分离相依源信号。自回归移动平均(ARMA)矩阵系数的对角结构将盲源分离(BSS)问题转化为AJD问题。对观测信号的辨识矩阵系数进行联合对角化,实现混合矩阵辨识。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Joint Diagonalization for ARMA Dependent Source Separation
In this paper, an Approximate Joint Diagonalization (AJD) approach is proposed to separate dependent source signals. The diagonal structure of the Auto Regressive Moving Average (ARMA) matrix coefficients moves the problem from Blind Source Separation (BSS) to AJD one. The identified matrix coefficients of the observed signal are jointly diagonalized to achieve the mixture matrix identification. Simulation results are provided to illustrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信